Brazilian Journal of Anesthesiology
https://bjan-sba.org/journal/rba/article/doi/10.1016/j.bjane.2020.08.003
Brazilian Journal of Anesthesiology
Narrative Review

Lidocaine in oncological surgery: the role of blocking in voltage-gated sodium channels. A narrative review

Lidocaína em cirurgia oncológica: o papel do bloqueio dos canais de sódio dependentes de voltagem. Revisão narrativa

German Soto, Fernanda Calero, Marusa Naranjo

Downloads: 8
Views: 1358

Abstract

Background
The current evidence suggests that oncological surgery, which is a therapy used in the treatment of solid tumors, increases the risk of metastasis. In this regard, a wide range of tumor cells express Voltage-Gated Sodium Channels (VGSC), whose biological roles are not related to the generation of action potentials. In epithelial tumor cells, VGSC are part of cellular structures named invadopodia, involved in cell proliferation, migration, and metastasis. Recent studies showed that lidocaine could decrease cancer recurrence through its direct effects on tumor cells and immunomodulatory properties on the stress response.

Objective
The aim of this narrative review is to highlight the role of VGSC in tumor cells, and to describe the potential antiproliferative effect of lidocaine during the pathogenesis of metastasis.

Contents
A critical review of literature from April 2017 to April 2019 was performed. Articles found on PubMed (2000–2019) were considered. A free text and MeSH-lidocaine; voltage-gated sodium channels; tumor cells; invadopodia; surgical stress; cell proliferation; metastasis; cancer recurrence – for articles in English, Spanish and Portuguese language – was used. A total of 62 were selected.

Conclusion
In animal studies, lidocaine acts by blocking VGSC and other receptors, decreasing migration, invasion, and metastasis. These studies need to be replicated in humans in the context of oncological surgery.

Keywords

Lidocaine,  Voltage-gated sodium channels,  Tumor cells,  Invadopodia,  Surgical stress,  Cell proliferation,  Metastasis,  Cancer recurrence

Resumo

Justificativa
As evidências atuais sugerem que a cirurgia oncológica, usada no tratamento de tumores sólidos, aumenta o risco de metástase. Nesse sentido, uma ampla gama de células tumorais expressa Canais de Sódio Dependentes de Voltagem (CSDV), cujos papéis biológicos não estão relacionados à produção de potencial de ação. Nas células epiteliais tumorais, o CSDV é parte integrante de estruturas celulares denominadas invadópodes, que participam da proliferação, migração e metástase celular. Estudos recentes mostraram que a lidocaína pode diminuir a recorrência do câncer por meio de efeitos diretos nas células tumorais e de propriedades imunomoduladoras na resposta ao estresse.

Objetivo
O objetivo desta revisão narrativa é analisar o papel do CSDV nas células tumorais e descrever o possível efeito antiproliferativo da lidocaína na patogênese das metástases.

Conteúdo
Foi realizada uma revisão crítica da literatura de Abril de 2017 a Abril de 2019. Os artigos encontrados no PubMed (2000–2019) foram analisados. Pesquisamos textos de linguagem livre e descritores MeSH-lidocaína; canais de sódio dependentes de voltagem; células tumorais; invadópodes; estresse cirúrgico; proliferação celular; metástase; recorrência do cancer – em artigos publicados em inglês, espanhol e português. Foram selecionadas 62 publicações.

Conclusão
Em estudos empregando animais, a lidocaína atua bloqueando o CSDV e outros receptores, diminuindo a migração, invasão e metástase. Esses estudos precisam ser replicados em humanos submetidos a cirurgia oncológica.

Palavras-chave

Lidocaína,  Canais de sódio dependentes de voltagem,  Células tumorais,  Invadópodes,  Estresse cirúrgico,  Proliferação celular,  Metástase,  Recorrência do câncer

References

1 A. Jemal, F. Bray, M.M. Center, et al. Global cancer statistics CA Cancer J Clin, 61 (2011), pp. 69-90

2 A.K. Exadaktylos, D.J. Buggy, D.C. Moriarty, et al. Can anesthetic technique for primary breast cancer surgery affect recurrence or metastasis? Anesthesiology, 105 (2006), pp. 660-664

3 D.J. Buggy, A. Borgeat, J. Cata, et al. Consensus statement from the BJA workshop on cancer and anaesthesia Br J Anaesth, 114 (1) (2015), pp. 2-3

4 A. Heaney, D.J. Buggy Can anaesthetic and analgesic techniques affect cancer recurrence or metastasis? Br J Anaesth, 109 (2012) S1:i17–i28

5 J. Kim Effects of surgery and anesthetic choice on immunosuppression and cancer recurrence J Transl Med, 16 (2018), p. 8

6 B.M. Lee, J.P. Cata Impact of anesthesia on cancer recurrence Rev Esp Anestesiol Reanim, 62 (2015), pp. 570-575

7 A. Gottschalk, S. Sharma, J. Ford, et al. The role of the perioperative period in recurrence after cancer surgery Anesth Analg, 110 (2010), pp. 1636-1643

8 K. McCausland, N. Martin, A. Missair Anaesthetic technique and cancer recurrence: current understanding OA Anaesth, 18 (2014), pp. 1-7

9 P. Besson, V. Driffort, E. Bon, et al. How do voltage. gated sodium channels enhance migration and invasiveness in cancer cells? Biochim Biophys, 1848 (2015), pp. 2493-2501

10 W.J. Brackenbury Voltage-gated sodium channels and metastatic disease Channels (Austin), 6 (2012), pp. 352-361

11 M. Fife, J.A. McCarroll, M. Kavallaris Movers and shakers: cell cytoskeleton in cancer metastasis Br J Pharm, 171 (2014), pp. 5507-5523

12 M.W. Sekandarzad, A.A.J. Van Zundert, P.B. Lirk, et al. Perioperative anesthesia care and tumor progression Anesth Analg, 124 (2017), pp. 1697-1708

13 L. Weinberg, B. Peake, C. Tan, et al. Pharmacokinetics and pharmacodynamics of lignocaine: a review World J Anesthesiol, 4 (2015), pp. 17-29

14 G. Soto, M. Naranjo Gonzalez, F. Calero Intravenous lidocaine infusion Rev Esp Anestesiol Reanim, 65 (2018), pp. 269-274

15 M.F. Ramírez, J.M. Huitink, J.P. Cata Perioperative clinical interventions that modify the immune response in cancer patients Op J Anesth, 3 (2013), pp. 133-139

16 A. Missair, J.P. Cata, G. Votta-Velis, et al. Impact of perioperative pain management on cancer recurrence: an ASRA/ESRA special article Reg Anesth Pain Med, 44 (2019), pp. 13-28

17 F. Cassinello, I. Prieto, M. del Olmo, et al. Cancer surgery: how may anesthesia influence outcome? J Clin Anesth, 27 (2015), pp. 262-272

18 G.P. Gupta, J. Massague Cancer metastasis: building a framework Cell, 127 (2006), pp. 679-695

19 P. Friedl, S. Alexander Cancer invasion and the microenvironment: plasticity and reciprocity Cell, 147 (2011), pp. 992-1009

20 W.A. Catterall From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels Neuron, 26 (2000), pp. 13-25

21 W.A. Catterall Voltage-gated sodium channel: structure, function, and pathophysiology J Physiol, 590 (2012), pp. 2577-2589

22 J.A. Black, S.G. Waxman Non-canonical roles of voltage-gated sodium channels Neuron, 80 (2013), pp. 280-291

23 S. Roger, L. Gillet, J.Y. LeGuennec, et al. Voltage-gated sodium channels and cancer: is excitability their primary role? Front Pharmacol, 6 (2015), p. 152

24 A.W. Lambert, D.R. Pattabiraman, R.A. Weinberg Emerging biological principles of metastasis Cell, 168 (2017), pp. 670-691

25 N. Jobe, D. Rösel, O. Tolde, et al. Complex 3D models to study drug targeting of invadopodias Clin Cancer Drugs, 1 (2014), pp. 85-89

26 S. Linder The matrix corroded: podosomes and invadopodias in extracellular matrix degradation Trends Cell Biol, 17 (2007), pp. 107-117

27 M.A. Eckert, J. Yang Targeting invadopodia to block breast cancer metastasis Oncotarget, 2 (2011), pp. 562-568

28 L. Brisson, V. Driffort, L. Benoist, et al. Nav1.5 Na+ channels allosterically regulate the NHE-1 exchanger and promote the activity of breast cancer cell invadopodia J Cell Sci, 126 (2013), pp. 4835-4842

29 W.J. Brackenbury, A.M. Chioni, J.K. Diss, et al. The neonatal splice variant of Nav1.5 potentiates in vitro invasive behavior of MDA-MB-231 human breast cancer cells Breast Cancer Res Treat, 101 (2007), pp. 149-160

30 M.B.A. Djamgoz Biophysics of cancer: cellular excitability (“CELEX”) hypothesis of metastasis J Clin Exp Oncol (2014) S1:005

31 F. Martin, C. Ufodiama, I. Watt, et al. Therapeutic value of voltage-gated sodium channel inhibitors in breast, colorectal, and prostate cancer: a systematic review Front Pharmacol, 6 (2015), p. 273

32 T. Koltai Voltage-gated sodium channel as a target for metastatic risk reduction with re-purposed drugs F1000Res, 4 (2015), p. 297

33 S.P. Fraser, J.K. Diss, A.M. Chioni, et al. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis Clin Cancer Res, 11 (2005), pp. 5381-5389

34 T.N. Chamaraux-Tran, C. Mathelin, M. Aprahamian, et al. Antitumor effects of lidocaine on human breast cancer cells: an in vitro and in vivo experimental trial Anticancer Res, 38 (2018), pp. 95-105

35 S. Fraser, I. Foo, M. Djamgoz Local anaesthetic use in cancer surgery and disease recurrence: role of voltage-gated sodium channels? Br J Anaesth, 113 (2014), pp. 899-902

36 T. Piegeler, E.G. Votta-Velis, G. Liu, et al. Antimetastatic potential of amide-linked local anesthetics: inhibition of lung adenocarcinoma cell migration and inflammatory Src signaling independent of sodium channel blockade Anesthesiology, 117 (2012), pp. 548-559

37 Y. Chang, C.H. Liu, M. Chen, et al. Local anesthetics induce apoptosis in human breast tumor cells Anesth Analg, 118 (2014), pp. 116-124

38 H.W. Wang, L.Y. Wang, L. Jiang, et al. Amide-linked local anesthetics induce apoptosis in human non-small cell lung cancer J Thorac Dis, 8 (2016), pp. 2748-2757

39 W. Xing, D.T. Chen, J.H. Pan, et al. Lidocaine induces apoptosis and suppresses tumor growth in human hepatocellular carcinoma cells in vitro and in a xenograft model in vivo Anesthesiology, 126 (2017), pp. 868-881

40 P. Lirk, R. Berger, M.W. Hollmann, et al. Lidocaine time- and dose-dependently demethylates deoxyribonucleic acid in breast cancer cell lines in vitro Br J Anaesth, 109 (2012), pp. 200-207

41 A. Doehring, B.G. Oertel, R. Sittl, et al. Chronic opioid use is associated with increased DNA methylation correlating with increased clinical pain Pain, 154 (2013), pp. 15-23

42 M. Sakaguchi, Y. Kuroda, M. Hirose The antiproliferative effect of lidocaine on human tongue cancer cells with inhibition of the activity of epidermal growth factor receptor Anesth Analg, 102 (2006), pp. 1103-1107

43 T. Mammoto, S. Higashiyama, M. Mukai, et al. Infiltration anesthetic lidocaine inhibits cancer cell invasion by modulating ectodomain shedding of heparin-binding epidermal growth factor-like growth factor (HB-EGF) J Cell Physiol, 192 (2002), pp. 351-358

44 Y. Jiang, H. Gou, J. Zhu, et al. Lidocaine inhibits the invasion and migration of TRPV6-expressing cancer cells by TRPV6 down-regulation Oncol Lett, 12 (2016), pp. 1164-1170

45 T. Piegeler, M.W. Hollmann, A. Borgeat, et al. Do amide local anesthetics play a therapeutic role in the perioperative management of cancer patients? Int Anesthesiol Clin, 54 (4) (2016), pp. e17-32

46 L.K. Dunn, M.E. Durieux Perioperative use of intravenous lidocaine Anesthesiology, 126 (2017), pp. 729-737

47 L. Weinberg, B. Peake, C. Tan, et al. Pharmacokinetics and pharmacodynamics of lignocaine: A review World J Anesthesiol, 4 (2015), pp. 17-29

48 T. Piegeler, E.G. Votta-Velis, G. Liu, et al. Antimetastatic potential of amide-linked local anesthetics: Inhibition of lung adenocarcinoma cell migration and inflammatory Src signaling independent of sodium channel blockade Anesthesiology, 117 (2012), pp. 548-559

49 M.F. Ramirez, P. Tran, J.P. Cata The effect of clinically therapeutic plasma concentrations of lidocaine on natural killer cell cytotoxicity Reg Anesth Pain Med, 40 (2015), pp. 43-48

50 H.L. Wang, H.D. Yan, Y.Y. Liu, et al. Intraoperative intravenous lidocaine exerts a protective effect on cell-mediated immunity in patients undergoing radical hysterectomy Mol Med Rep, 12 (2015), pp. 7039-7044

51 E.N. Brown, K.J. Pavone, M. Naranjo Multimodal general anesthesia: theory and practice Anesth Analg, 127 (2018), pp. 1246-1258

52 T.N. Chamaraux-Tran, T. Piegeler The amide local anesthetic lidocaine in cancer surgery-potential antimetastatic effects and preservation of immune cell function? A narrative review Front Med, 4 (2017), p. 235

53 F. Calero, F. Pignolo, G. Soto Effect of intravenous lidocaine infusion on sevoflurane and fentanyl consumption, hemodynamic response and ventricular repolarization Rev Argent Anestesiol, 74 (2016), pp. 49-56

54 A. Sherwin, D.J. Buggy The effect of anaesthetic and analgesic technique on oncological outcomes Curr Anesthesiol Rep, 8 (2018), p. 411

55 P.A. Singleton, J. Moss Effect of perioperative opioids on cancer recurrence: a hypothesis Future Oncol, 6 (2010), pp. 1237-1242

56 C.R. Hooijmans, F.J. Geessink, M. Ritskes-Hoitinga, et al. A systematic review of the modifying effect of anaesthetic drugs on metastasis in animal models for cancer PLoS One, 11 (2016), Article e0156152

57 H. Zhao, M. Iwasaki, J. Yang, et al. Hypoxia-inducible factor-1: A possible link between inhalational anesthetics and tumor progression? Act Anaesth Taiwan, 52 (2014), pp. 70-76

58 D. Liao, R.S. Johnson Hypoxia: a key regulator of angiogenesis in cancer Cancer Metastasis Rev, 26 (2007), pp. 281-290

59 D. Evans, C. Fowler-Williams, D. Ma Is volatile anesthesia during cancer surgery likely to increase the metastatic risk? Int Anesth Clin, 54 (2016), pp. 92-107

60 G. Elena, N. Amerio, P. Ferrero, et al. Effects of repetitive sevoflurane anaesthesia on immune response, select biochemical parameters and organ histology in mice Lab Animals, 37 (2003), pp. 193-203

61 E. Greenwood, S. Nimmo, H. Paterson, et al. Intravenous lidocaine infusion as a component of multimodal analgesia for colorectal surgery measurement of plasma levels Periop Med, 8 (2019), p. 1

62 D.J. Buggy, J. Freeman, M.Z. Johnson, et al. Systematic review and consensus definitions for standardised endpoints in perioperative medicine: postoperative cancer outcomes Br J Anaesth, 121 (2018), pp. 38-44

5f6a3e660e8825722f9fefc7 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections