Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1590/S0034-70942013000100011
Brazilian Journal of Anesthesiology
Review Article

Anestésicos, precondicionamento e proteção cerebral

Anesthetics, cerebral protection and preconditioning

Rogean Rodrigues Nunes; Gastão Fernandes Duval Neto; Júlio César Garcia de Alencar; Suyane Benevides Franco; Nayanna Quezado de Andrade; Danielle Maia Holanda Dumaresq; Sara Lúcia Cavalcante

Downloads: 1
Views: 1249

Resumo

JUSTIFICATIVA E OBJETIVOS: Diversos estudos têm demonstrado o precondicionamento cerebral como mecanismo protetor diante de uma situação de estresse. Fatores determinantes são descritos, bem como a neuroproteção proporcionada por agentes anestésicos e não anestésicos. CONTEÚDO: Fez-se revisão baseada nos principais artigos da literatura que englobam a fisiopatologia da isquemia-reperfusão e lesão neuronal e os fatores não farmacológicos (inflamação, glicemia e temperatura) e farmacológicos relacionados com a mudança da resposta à isquemia-reperfusão, além da neuroproteção induzida pelo uso dos anestésicos. CONCLUSÕES: O cérebro tem a capacidade de se proteger contra a isquemia quando estimulado. A elucidação desse mecanismo possibilita a aplicação de substâncias indutoras do precondicionamento, como alguns anestésicos, outros fármacos e medidas não farmacológicas, como a hipotermia, com o objetivo de induzir tolerância a lesões isquêmicas.

Palavras-chave

ANESTÉSICOS, COMPLICAÇÕES, Isquemia, HIPOTERMIA, Precondicionamento Isquêmico, SISTEMA NERVOSO CENTRAL

Abstract

BACKGROUND AND OBJECTIVES: Several studies demonstrate that cerebral preconditioning is a protective mechanism against a stressful situation. Preconditioning determinants are described, as well as the neuroprotection provided by anesthetic and non-anesthetics agents. CONTENT: Review based on the main articles addressing the pathophysiology of ischemia-reperfusion and neuronal injury and pharmacological and non-pharmacological factors (inflammation, glycemia, and temperature) related to the change in response to ischemia-reperfusion, in addition to neuroprotection induced by anesthetic use. CONCLUSIONS: The brain has the ability to protect itself against ischemia when stimulated. The elucidation of this mechanism enables the application of preconditioning inducing substances (some anesthetics), other drugs, and non-pharmacological measures, such as hypothermia, aimed at inducing tolerance to ischemic lesions.

Keywords

Ischemic Preconditioning, Ischemia, Central Nervous System, Anesthetics, Hypothermia

References

Koerner IP, Alkayed NJ. Ischemic preconditioning. Acute stroke, bench to bedside. 2006:345-353.

Tatlisumak T, Durukan A. Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection. Exp Transl Stroke Med. 2010;2.

Dahl NA, Balfour WM. Prolonged anoxic survival due to anoxia pre-exposure: Brain ATP, lactate, and pyruvate. Am J Physiol. 1964;207:452-456.

Wells BA, Keats AS, Cooley DA. Increased tolerance to cerebral ischemia produced by general anesthesia during temporary carotid occlusion. Surgery. 1963;54:216-223.

Kitagawa K, Matsumoto M, Tagaya M. "Ischemic tolerance" phenomenon found in the brain. Brain Res. 1990;528:21-24.

Homi HM, Silva Junior BA, Velasco IT. Fisiopatologia da isquemia cerebral. Rev Bras Anestesiol. 2000;50:405-414.

Sanders RD, Ma D, Maze M. Anaesthesia induced neuroprotection. Best Pract Research Clin. Anaesthesiology. 2005;19:461-474.

Safar P. Cerebral resuscitation after cardiac arrest: research initiatives and future directions. Ann Emerg Med. 1993;22:324-349.

Lent R. Os chips neurais: processamento de informações e transmissão de mensagens através das sinapses. Cem bilhões de neurônios?. 2010:111-145.

Farooqui AA, Haun SE, Horrocks LA. Ischemia and hypoxia. Basic neurochemistry: molecular, cellular, and medical aspects. 1994:867-883.

Plum F. Mediators and antagpnism in seconday brain damage: In vivo and in vitro control of acid-base regulation of brain cells during ischemic and selective acidic exposure. Acta Neurochir. 1993;57:57-63.

Dietrich WD. Morphological manifestation of reperfusion injury in brain. Ann N Y Acad Sci. 1994;723:15-24.

Lai JC. Oxidative metabolism in neuronal and non-neuronal mitochondria. Can J Physiol Pharmacol. 1992;70:130-137.

Abe K, Aoki M, Kawagoe J. Ischemic delayed neuronal death: A mitochondrial hypothesis. Stroke. 1995;26:1478-1489.

Traystman RJ, Kirsch JR, Koehler RC. Oxygen radical mechanisms of brain injury following ischemia and reperfusion. J Appl Physiol. 1991;71:1185-1195.

Yue TL, Barone F, Gu JL. Brain alfa-tocoferol levels are not altered following ischemia/reperfusion induced cerebral injury in rats and gerbils. Brain Res. 1993;610:53-56.

Ikeda Y, Long DM. The molecular basis of brain injury and brain edema: the role of oxygen free radicals. Neurosurgery. 1990;27:1-11.

Oh MS, Betz AL. Interaction between free radicals and excitatory amino acids in the formation of ischemic brain edema in rats. Stroke. 1991;22:915-921.

Wahl M, Schilling L, Unterberg A. Mediators of vascular and parenchymal mechanisms in secondary brain damage. Acta Neurochir. 1993;57:64-72.

Peruche B, Krieglstein J. Mechanisms of drug actions against neuronal damage caused by ischemia: an overview. Prog Neuropsychopharmacol Biol Psychiatry. 1993;17:21-70.

Gustafson I, Edgren E, Hulting J. Brain-oriented intensive care after resuscitation from cardiac arrest. Resuscitation. 1992;24:245-261.

Werner C, Hoffman WE, Thomas C. Ganglionic blockade improves neurologic outcome from incomplete ischemia in rats: partial reversal by exogenous catecholamines. Anesthesiology. 1990;73:923-929.

Ma D, Hossain M, Rajakumaraswamy N. Combination of xenon and isoflurane produces a synergistic protective effect against oxygen glucose deprivation injury in a neuronal-glial co-culture model. Anesthesiology. 2003;99:748-751.

Crow JP, Beckman JS. The role of peroxynitrite in nitric-oxide mediated toxicity. Curr Top Microbiol Immunol. 1995;196:57-73.

Nakashima MN, Yamashita K, Kataoka Y. Time course of nitric oxide synthase activity in neuronal, glial, and endothelial cells of rat striatum following focal cerebral ischemia. Cell Mol Neurobiol. 1995;15:341-349.

Tatlisumak T, Durukan A. Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection. Exp Transl Stroke Med. 2010;2.

Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends in Neuroscience. 1999;22:391-397.

Liu Y, Kato H, Nakata N. Protection of rat hippocampus againstis chemic neuronal damage by pretreatment with sublethal ischemia. Brain Res. 1992;586:121-124.

Nishio S, Taki W, Uemura Y. Ischemic tolerance due to the induction of HSP70 in a rat ischemic recirculation model. Brain Res. 1993;615:281-288.

Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74.

Chopp M, Chen H, Ho KL. Transient hyperthermia protects against subsequent fore brain ischemic cell damage in the rat. Neurology. 1989;39:1396-1398.

Nishio S, Yunoki M, Chen ZF. Ischemic tolerance in the rat neocortex following hypothermic preconditioning. J Neurosurg. 2000;93:845-851.

Bergstedt K, Hu BR, Wieloch T. Initiation of protein synthesis and heat shock protein 72 expression in the rat brain following severe insulin induced hypoglycemia. Acta Neuropathol. 1993;86:145-153.

Huber R, Kasischke K, Ludolph AC. Increase of cellular hypoxic tolerance by erythromycin and other antibiotics. Neuroreport. 1999;10:1543-1546.

Riepe MW, Kasischke K, Raupach A. Acetylsalicylic acid increases tolerance against hypoxic and chemical hypoxia. Stroke. 1997;28:2006-2011.

Dawson TM. Preconditioning mediated neuroprotection through erythropoietin?. Lancet. 2002;359:96-97.

Kapinya KJ, Lowl D, Futterer C. Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and isinducible NO synthase dependent. Stroke. 2002;33:1889-1898.

Barone FC, White RF, Spera PA. Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke. 1998;29:1937-1950.

Weigl M, Tenze G, Steinlechner B. A systematic review of currently available pharmacological neuroprotective agents as a sole intervention before anticipated or induced cardiac arrest. Resuscitation. 2005;65:21-39.

Zheng Z, Lee JE, Yenari MA. Stroke: molecular mechanisms and potential targets for treatment. Curr Mol Med. 2003;3:361-372.

Han HS, Yenari MA. Cellular targets of brain inflammation in stroke. Curr Opin Investig Drugs. 2003;4:522-529.

Danton GH, Dietrich WD. Inflammatory mechanisms after ischemia and stroke. J Neuro pathol Exp Neurol. 2003;62:127-136.

Ginis I, Jaiswal R, Klimanis D. TNF-alpha-induced tolerance to ischemic injury involves differential control of NFkappa B transactivation: the role of NF-kappa B association with p300 adaptor. J Cereb Blood Flow Metab. 2002;22:142-152.

Gary DS, Bruce-Keller AJ, Kindy MS. Ischemic and excitotoxic brain injury is enhanced in mice lacking the p55 tumor necrosis factor receptor. J Cereb Blood Flow Metab. 1998;18:1283-1287.

Bruce AJ, Boling W, Kindy MS. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med. 1996;2:788-794.

Candelario-Jalil E, Alvarez D, Gonzalez-Falcon A. Neuroprotective efficacy of nime sulide against hippocampal neuronal damage following transient forebrain ischemia. Eur J Phahrmacol. 2002;453:189-195.

Uchino H, Minamikawa-Tachino R, Kristian T. Differential neuroprotection by cyclosporine A and FK506 following ischemia corresponds with differing abilities to inhibit calcineurin and the mitochondrial permeability transition. Neurobiol Dis. 2002;10:219-233.

Kinoshita K, Kraydieh S, Alonso O. Effect of post traumatic hyperglycemia on contusion volume and neutrophilac cumulation after moderate fluid-percussion brain injury in rats. J Neurotrauma. 2002;19:681-692.

Chew W, Kucharczyk J, Moseley M. Hyperglycemia augments ischemic brain injury: in vivo MR imaging/spectroscopic study with nicardipine in cats with occluded middle cerebral arteries. Am J Neuroradiol. 1991;12:603-609.

Conroy BP, Grafe MR, Jenkins LW. Histopathologic consequences of hyperglycemic cerebral ischemia during hypothermic cardiopulmonary by pass in pigs. Ann Thorac Surg. 2001;71:1325-1334.

Guyot LL, Diaz FG, O'Regan MH. The effect of streptozotocin induced diabetes on the release of excitotoxic and other aminoacids from the ischemic rat cerebral cortex. Neurosurgery. 2001;48:385-390.

Lin B, Ginsberg MD, Busto R. Hyperglycemia triggers massive neutrophil deposition in brain following transient ischemia in rats. Neurosci Lett. 2000;278:1-4.

Ding C, He Q, Li PA. Activation of cell death pathway after a brief period of global ischemia in diabetic and non diabetic animals. Exp Neurol. 2004;188:421-429.

Baird TA, Parsons MW, Phanh T. Persistent post stroke hyperglycemia is independently associated with infarct expansion and worse clinical outcome. Stroke. 2003;34:2208-2214.

Nuttall GA, Abel MD, Mullany CJ. Intraoperative hyperglycemia and perioperative outcomes in cardiac surgery patients. Mayo Clin Proc. 2005;80:862-866.

VandenBerghe G, Schoonheydt K, Becx P. Insulin therapy protects the central and peripheral nervous system of intensive care patients. Neurology. 2005;64:1348-1353.

Auer RN. Non pharmacologic (physiologic) neuroprotection in the treatment of brain ischemia. Ann NYAcad Sci. 2001;939:271-282.

Busto R, Dietrich WD, Globus MY. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab. 1987;7:729-738.

Zhao O, Memezawa H, Smith ML. Hyperthermia complicates middle cerebral artery occlusion induced by an intraluminal filament. Brain Res. 1994;649:253-259.

Minamisawa H, Smith ML, Siesjo BK. The effect of mild hyperthermia and hypothermia on brain damage following 5, 10 and 15min of fore brain ischemia. Ann Neurol. 1990;28:26-33.

Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346:549-556.

Koehler RC, Eleff SM, Traystman RJ. Global neuronal ischemia and reperfusion. Cardiac arrest: the science and practice of resuscitation medicine. 1996:113-145.

Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267:1456-1462.

Dirnag LU, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22:391-397.

Dawson TM, Dawson VL, Snyder SH. A novel neuronal messenger in brain: the free radical, nitricoxide. Ann Neurol. 1992;32:297-311.

Dawson TM, Dawson VL. Nitricoxide: actions and pathological roles. Neuroscientist. 1995;1:7-18.

Yuan HB, Huang Y, Zheng S. Hypothermic preconditioning increases survival of purkinje neurons in rat cerebellar slices after an in vitro simulated ischemia. Anesthesiology. 2004;100:331-337.

Calle PA, Paridaens K, DeRidder LI. Failure of nimodipine to prevent brain damage in a global brain ischemia model in the rat. Resuscitation. 1993;25:59-71.

Lazarewicz JW, Pluta R, Puka M. Diverse mechanisms of neuronal protection by nimodipine in experimental rabbit brain ischemia. Stroke. 1990;21:108-110.

Roine RO, Kaste M, Kinnunen A. Nimodipine after resuscitation from out- of-hospital ventricular fibrillation: A placebo-controlled, double-blind, randomized trial. JAMA. 1990;264:3171-3177.

Arnowski J, Waxham MN, Grotta JC. Neuronal protection and preservation of calcium/calmodulin dependent protein kinase II and proteinkinase C activity by dextrorphan treatment in global ischemia. J Cereb Blood Flow Metab. 1993;13:550-557.

Li MM, Payne RS, Reid KH. Correlates of delayed neuronal damage and neuro protection in a rat model of cardiac arrest induced cerebral ischemia. Brain Res. 1999;826:44-52.

Dietrich WD, Lin B, Globus MY. Effect of delayed M K-801 (dizocilpine) treatment with or without immediate post ischemic hypothermia on chronic neuronal survival after global fore brain ischemia in rats. J Cereb Blood Flow Metab. 1995;15:960-968.

Shuaib A, Murabit MA, Kanthan R. The neuroprotective effects of gamma-vinyl GABA in transient global ischemia: a morphological study with early and delayed evaluations. Neurosci Lett. 1996;204:1-4.

Thaminy S, Reymann JM, Heresbach N. Is chlormethiazole neuroprotective in experimental global cerebral ischemia?: A microdialysis and behavioral study. Pharmacol Bio chem Behav. 1997;56:737-745.

Vergoni AV, Ottani A, Botticelli AR. Neuroprotective effect of gamma hydroxybutyrate in transient global cerebral ischemia in the rat. Eur J Pharmacol. 2000;397:75-84.

Iqbal S, Baziany A, Gordon S. Neuroprotective effect of tiagabine in transient fore brain global ischemia: an in vivo microdialysis, behavioral, and histological study. Brain Res. 2002;946:162-170.

Artru AA, Michenfelder JD. A noxic cerebral potassium accumulation reduced by phenytoin: mechanism of cerebral protection?. Anesth Analg. 1981;60:41-45.

Imaizumi S, Kurosawa K, Kinouchi H. Effect of phenytoin on cortical Na(þ)-K(þ)-ATPase activity in global ischemic rat brain. J Neurotrauma. 1995;12:231-234.

Brambrink AM, Koerner IP, Diehl K. The antibiotic erythromycin induces tolerance against transient global cerebral ischemia in rats (pharmacologic preconditioning). Anesthesiology. 2006;104:1208-1211.

Kawaguchi M, Kimbro JR, Drummond JC. Isoflurane delays but does not prevent cerebral infarction in rats subjected to focal ischemia. Anesthesiology. 2000;92:1335-1342.

Kawaguchi M, Drummond JC, Cole DJ. Effect of isoflurane on neuronal apoptosis in rats subjected to focal cerebral ischemia. Anesth Analg. 2004;98:798-805.

Franks NP, Lieb WR. Molecular and cellular mechanisms of general anaesthesia. Nature. 1994;367:607-614.

Harukuni I, Bhardwaj A. Mechanisms of brain injury after global cerebral ischemia. Neurol Clin. 2006;24:1-21.

Kudo M, Aono M, Lee Y. Effects of volatile anesthetics on N-methyl-D-aspartate excitotoxicity in primary rat neuronal glial cultures. Anesthesiology. 2001;95:756-765.

Kimbro JR, Kelly PJ, Drummond JC. Isoflurane and pentobarbital reduce AMPA toxicity in vivo in the rat cerebral cortex. Anesthesiology. 2000;92:806-812.

Harada H, Kelly PJ, Cole DJ. Isoflurane reduces N-methylD-aspartate toxicity in vivo in the rat cerebral cortex. Anesth Analg. 1999;89:1442-1447.

Blanck TJ, Haile M, Xu F. Isoflurane pretreatment ameliorates post ischemic neurologic dysfunction and preserves hippocampal Ca2C/calmodulin dependent proteinkinase in a canine cardiac arrest model. Anesthesiology. 2000;93:1285-1293.

Miura Y, Grocott HP, Bart RD. Differential effects of anesthetic agents on outcome from near complete but not incomplete global ischemia in the rat. Anesthesiology. 1998;89:391-400.

Engelhard K, Werner C, Reeker W. Desflurane an disoflurane improve neurological outcome after incomplete cerebral ischaemia in rats. Brit J Anaesth. 1999;83:415-421.

Patel PM, Drummond JC, Cole DJ. Isoflurane and pentobarbital reduce the frequency of transient ischemic depolarizations during focal ischemia in rats. Anesth Analg. 1998;86:773-780.

Soonthon-Brant V, Patel PM, Drummond JC. Fentanyl does not increase brain injury after focal cerebral ischemia in rats. Anesth Analg. 1999;88:49-55.

Baughman VL, Hoffman WE, Miletich DJ. Neurologic outcome in rat following in complete cerebral ischemia during halothane, isoflurane, or N2O. Anesthesiology. 1988;69:192-198.

Homi HM, Mixco JM, Sheng H. Severe hypotension is not essential for isoflurane neuroprotection against fore brain ischemia in mice. Anesthesiology. 2003;99:1145-1151.

Mackensen GB, Nellgard B, Kudo M. Periischemic cerebral blood flow (CBF) does not explain beneficial effects of isoflurane on outcome from near complete fore brain ischemia in rats. Anesthesiology. 2000;93:1102-1106.

Engelhard K, Werner C, Reeker W. Desflurane and isoflurane improve neurological outcome after incomplete cerebral ischaemia in rats. Brit J Anaesth. 1999;83:415-421.

Bickler PE, Warner DS, Stratmann G. Gamma-Aminobutyric acid-A receptors contribute to isoflurane neuroprotection in organotypic hippocampal cultures. Anesth Analg. 2003;97:564-571.

Miyazaki H, Nakamura Y, Arai T. Increase of glutamate uptake in astrocytes: a possible mechanism of action of volatile anesthetics. Anesthesiology. 1997;86:1359-1366.

Yatsu FM, Diamond I, Graziano C. Experimental brain ischemia: protection from irreversible damage with a rapid acting barbiturate (methohexital). Stroke. 1972;3:726-732.

Schmid-Elsaesser R, Schroder M, Zausinger S. EEG burst suppression is not necessary for maximum barbiturate protection in transient focal cerebral ischemia in the rat. Journal of Neurological Science. 1999;162:14-19.

Warner DS, Takaoka S, Wu B. Electroencephalographic burst suppression is not required to elicit maximal neuroprotection from pentobarbital in a rat model of focal cerebral ischemia. Anesthesiology. 1996;84:1475-1484.

Baughman VL, Hoffman WE, Thomas C. Comparison of methohexital and isoflurane on neurologic outcome and histopathology following incomplete ischemia in rats. Anesthesiology. 1990;72:85-94.

Milde LN, Milde JH, Lanier WL. Comparison of thee ffects of isoflurane and thiopental on neurologic outcome and neuropathology after temporary focal cerebral ischemia in primates. Anesthesiology. 1988;69:905-913.

Nehls DG, Todd MM, Spetzler RF. A comparison of the cerebral protective effects of isoflurane and barbiturates during temporary focal ischemia in primates. Anesthesiology. 1987;66:453-464.

Zausinger S, Westermaier T, Plesnila N. Neuroprotection in transient focal cerebral ischemia by combination drug therapy and mild hypothermia: comparison with customary therapeutic regimen. Stroke. 2003;34:1526-1532.

Whitelaw A, Thoresen M. Clinical trials of treatments after perinatal asphyxia. Curr Opin Ped. 2002;14:664-668.

Westermaier T, Zausinger S, Baethmann A. No additional neuroprotection provided by barbiturate-induced burst suppression under mild hypothermic conditions in rats subjected to reversible focal ischemia. Journal of Neurosurgery. 2000;93:835-844.

Ward JD, Becker DP, Miller JD. Failure of prophylac ic barbiturate coma in the treatment of severe head injury. Journal of Neurosurgery. 1985;62:383-388.

Randomized clinical study of thiopental loading in comatose survivors of cardiac arrest. New England Journal of Medicine. 1986;314:397-403.

Zaidan JR, Klochany A, Martin WM. Effect of thiopental on neurologic outcome following coronary artery bypass grafting. Anesthesiology. 1991;74:406-411.

Nussmeier NA, Arlund C, Slogoff S. Neuropsychiatric complications after cardiopulmonary bypass: cerebral protection by a barbiturate. Anesthesiology. 1986;64:165-170.

Kochs E, Hoffman WE, Werner C. The effects of propofol on brain electrical activity, neurologic outcome, and neuronal damage followingin complete ischemia in rats. Anesthesiology. 1992;76:245-252.

Yamaguchi S, Midorikawa Y, Okuda Y. Propofol prevents delayed neuronal death following transient fore brain ischemia in gerbils. Canadian Journal of Anaesthesia. 1999;46:593-598.

Engelhard K, Werner C, Eberspacher E. Influence of propofol on neuronal damage and apoptotic factor safter incomplete cerebral ischemia and reperfusion in rats: a longterm observation. Anesthesiology. 2004;101:912-917.

Roach GW, Newman MF, Murkin JM. Multicenter study of perioperative ischemia. Anesthesiology. 1999;90:1255-1264.

Werner C, Hoffman WE, Thomas C. Ganglionic blockade improves neurologic outcome from incomplete ischemia in rats: partial reversal by exogenous catecholamines. Anesthesiology. 1990;73(^s923-929).

Hoffman WE, Cheng MA, Thomas C. Clonidine decreases plasma catecholamines and improves outcome from incomplete ischemia in the rat. Anesth Analg. 1991;73:460-464.

Hoffman WE, Kochs E, Werner C. Dexmedetomidine improves neurologic outcome from incomplete ischemia in the rat; Reversal by the a2-adrenergic antagonist atipamezole. Anesthesiology. 1991;75:328-332.

Maier C, Steinberg GK, Sun GH. Neuroprotection by the a2-adrenoceptor agonist dexmedetomidine in a focal model of cerebral ischemia. Anesthesiology. 1993;79:306-312.

Olney JW, Labruyere J, Price MT. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science. 1989;244:1360-1362.

Loscher W, Wlaz P, Szabo L. Focal ischemia enhances the adverse effect potential of N-methyl-D- aspartate receptor antagonists in rats. Neuroscience Letters. 1998;240:33-36.

Choi DW, Koh JY, Peters S. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. Journal of Neuroscience. 1988;8:185-196.

Proescholdt M, Heimann A, Kempski O. Neuroprotection of S(+) ketamine isomer in global fore brain ischemia. Brain Research. 2001;904:245-251.

Lees GJ. Influence of ketamine on the neuronal death caused by NMDA intherat hippocampus. Neuropharmacology. 1995;34:411-417.

Nagels W, Demeyere R, Van Hemelrijck J. Evaluation of the neuroprotective effects of S (+) ketamine during open-heart surgery. Anesth Analg. 2004;98:1595-1603.

Arrowsmith JE, Harrison MJ, Newman SP. Neuroprotection of the brain during cardiopulmonary bypass: a randomized trial of remacemide during coronary artery bypass in171 patients. Stroke. 1998;29:2357-2362.

Todorovic VJ, Todorovic SM, Mennerick S. Nitrousoxide (laughinggas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nature Medicine. 1998;4:460-463.

Yokoo N, Sheng H, Mixco J. Intraischemic nitrous oxide alters neither neurologic nor histologic outcome: a comparison with dizocilpine. Anesth Analg. 2004;99:896-903.

Wilhelm S, Ma D, Maze M. Effects of xenon on in vitro and in vivo models of neuronal injury. Anesthesiology. 2002;96:1485-1491.

Homi HM, Yokoo N, Ma D. The neuroprotective effect of xenon administration during transient middle cerebral artery occlusion in mice. Anesthesiology. 2003;99:876-881.

Ma D, Yang H, Lynch J. Xenon attenuates cardiopulmonary bypass induced neurologic and neurocognitive dysfunction in the rat. Anesthesiology. 2003;98:690-698.

David HN, Leveille F, Chazalviel L. Reduction of ischemic brain damage by nitrous oxide and xenon. Journal of Cerebral Blood Flow and Metabolism. 2003;23:1168-1173.

Ma D, Wilhelm S, Maze M. Neuroprotective and neurotoxic properties of the "inert" gas, xenon. Brith J Anaesth. 2002;89:739-746.

Nagata A, Nakao SS, Nishizawa N. Xenon inhibits but N(2)O enhances ketamine-induced c-Fos expression in the rat posterior cingulated and retrosplenial cortices. Anesth Analg. 2001;92:362-368.

Gruss M, Bushell TJ, Bright DP. Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Molecular Pharmacology. 2004;65:443-452.

5dd438250e8825a755c63493 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections