Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1590/S0034-70942011000500015
Brazilian Journal of Anesthesiology
Review Article

Ventilação mecânica protetora, por que utilizar?

Protective mechanical ventilation, why use it?

Emerson Seiberlich; Jonas Alves Santana; Renata de Andrade Chaves; Raquel Carvalho Seiberlich

Downloads: 0
Views: 1280

Resumo

JUSTIFICATIVA E OBJETIVOS: As estratégias de ventilação mecânica (VM) vêm sofrendo modificações nas últimas décadas, com tendência ao uso de volumes correntes (VC) cada vez menores. Porém, em pacientes sem lesão pulmonar aguda (LPA) ou SARA (síndrome da angústia respiratória do adulto), o uso de VC altos ainda é muito comum. Estudos retrospectivos sugerem que o uso dessa prática pode estar relacionado à LPA associada à ventilação mecânica. O objetivo desta revisão é buscar evidências científicas que norteiem uma VM protetora para pacientes com pulmões sadios e sugerir estratégias para ventilar adequadamente um pulmão com LPA/SARA. CONTEÚDO: Realizou-se revisão com base nos principais artigos que englobam o uso de estratégias de ventilação mecânica. CONCLUSÕES: Ainda faltam estudos consistentes para que se determine qual seria a melhor maneira de ventilar um paciente com pulmão sadio. As recomendações dos especialistas e as atuais evidências apresentadas neste artigo indicam que o uso de um VC inferior a 10 mL.kg-1 de peso corporal ideal, associado à pressão expiratória final positiva (PEEP) > 5 cmH2O e sem ultrapassar uma pressão de platô de 15 a 20 cmH2O, poderia minimizar o estiramento alveolar no final da inspiração e evitar possível inflamação ou colabamento alveolar.

Palavras-chave

COMPLICAÇÕES, EQUIPAMENTOS, EQUIPAMENTOS, VENTILAÇÃO

Abstract

BACKGROUND AND OBJECTIVES: Mechanical ventilation (MV) strategies have been modified over the last decades with a tendency for increasingly lower tidal volumes (VT). However, in patients without acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) the use of high VTs is still very common. Retrospective studies suggest that this practice can be related to mechanical ventilation-associated ALI. The objective of this review is to search for evidence to guide protective MV in patients with healthy lungs and to suggest strategies to properly ventilate lungs with ALI/ARDS. CONTENTS: A review based on the main articles that focus on the use of strategies of mechanical ventilation was performed. CONCLUSIONS: Consistent studies to determine which would be the best way to ventilate a patient with healthy lungs are lacking. Expert recommendations and current evidence presented in this article indicate that the use of a VT lower than 10 mL.kg-1, associated with positive endexpiratory pressure (PEEP) > 5 cmH2O without exceeding a pressure plateau of 15 to 20 cmH2O could minimize alveolar stretching at the end of inspiration and avoid possible inflammation or alveolar collapse.

Keywords

Respiration, Artificial, Ventilator-Induced Lung Injury, Pulmonary Atelectasis, Positive Pressure Respiration

References

Schultz MJ, Haitsma JJ, Slutsky AS. What tidal volumes should be used in patients without acute lung injury?. Anesthesiology. 2007;106:1226-31.

Ashbaugh DG, Bigelow DB, Petty TL. Acute respiratory distress in adults. Lancet. 1967;2:319-323.

Bernard GR, Artigas A, Brigham KL. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3):818-824.

Cehovic GA, Hatton KW, Fahy BG. Adult Respiratory Distress Syndrome. Int Anesthesiol Clin. 2009;1:83-95.

The Acute Respiratory Distress Syndrome Network: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301-1308.

Wiedemann HP, Wheeler AP, Bernard GR. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564-2575.

Wheeler AP, Bernard GR, Thompson BT. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med. 2006;354:2213-2224.

Brun-Buisson C, Minelli C, Bertolini G. Epidemiology and outcome of acute lung injury in European intensive care units: Results from the ALIVE study. Intensive Care Med. 2004;30:51-61.

Ware LB. Prognostic determinants of acute respiratory distress syndrome in adults: impact on clinical trial design. Crit Care Med. 2005;33(3^ssuppl):S217-S222.

Rubenfeld GD, Caldwell E, Peabody E. Incidence and outcomes of acute lung injury. N Engl J Med. 2005;353:1685-1693.

Habashi NM. Other approaches to open-lung ventilation: airway pressure release ventilation. Crit Care Med. 2005;33(3^ssuppl):S228-S240.

Suratt BT, Parsons PE. Mechanisms of acute lung injury/acute respiratory distress syndrome. Clin Chest Med. 2006;27:579-589.

Ranieri VM, Suter PM, Tortorella C. Effect of mechanical ventilation on nflammatory mediators in patients with acute respiratory distress syndrome: A randomized controlled trial. JAMA. 1999;282:54-61.

Ranieri VM, Giunta F, Suter PM. Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA. 2000;284:43-4.

Eisner MD, Parsons P, Matthay MA. Acute Respiratory Distress Syndrome Network: Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury. Thorax. 2003;58:983-988.

Amato MB, Barbas CS, Medeiros DM. Effect of a protectiveventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:347-54.

Parsons PE, Matthay MA, Ware LB. Elevated plasma levels of soluble TNF receptors are associated with morbidity and mortality in patients with acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2005;288:L426-L431.

The Acute Respiratory Distress Syndrome Network: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301-8.

The Acute Respiratory Distress Syndrome Network: Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351:327-36.

Forsythe SM, Schmidt GA. Sodium bicarbonate for the treatment of lactic acidosis. Chest. 2000;117:260-267.

Mancebo J, Ferna'ndez R, Blanch L. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;173:1233-1239.

Donahoe M. Basic Ventilator Management: Lung Protective Strategies. Surg Clin N Am. 2006;86:1389-1408.

Li LF, Liao SK, Ko YS. Hyperoxia increases ventilator-induced lung injury via mitogen-activated protein kinases: a prospective, controlled animal experiment. Critical Care. 2007;11.

Pinhu L, Whitehead T, Evans T. Ventilator-associated lung injury. Lancet. 2003;361:332-40.

Fernandez-Perez ER, Keegan MT, Brown DR. Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology. 2006;105:14-8.

Michelet P, D' Journo XB, Roch A. Protective ventilation influences systemic inflammation after esophagectomy: A randomized controlled study. Anesthesiology. 2006;105:911-9.

Lee PC, Helsmoortel CM, Cohn SM. Are low tidal volumes safe?. Chest. 1990;97:430-4.

Amato MB, Carvalho CR, Isola A. III Consenso Brasileiro de Ventilação Mecânica: Ventilação mecânica no intra-operatório. J Bras Pneumol. 2007;33(^s2):s137-141.

Soubhie A, Silva ED, Simões CM. Evaluation of Trasoperatory Ventilation Modalities by a Questionnaire. Rev Bras Anestesiol. 2010;60(4):415-421.

5dd6a4720e8825993113f288 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections