Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1590/S0034-70942011000500013
Brazilian Journal of Anesthesiology
Miscellaneous

Atualização das diretrizes de ressuscitação cardiopulmonar de interesse ao anestesiologista

Update on cardiopulmonary resuscitation guidelines of interest to anesthesiologists

Luiz Fernando dos Reis Falcão; David Ferez; José Luiz Gomes do Amaral

Downloads: 1
Views: 1064

Resumo

JUSTIFICATIVA E OBJETIVOS: As novas diretrizes de ressuscitação cardiopulmonar (RCP) enfatizam a importância das compressões torácicas de alta qualidade e modificam algumas rotinas. Este artigo tem por objetivo revisar as principais alterações na reanimação praticada pelo médico anestesiologista. CONTEÚDO: A ênfase para realização das compressões torácicas de alta qualidade, com frequência e profundidade adequadas, permitindo retorno total do tórax e com interrupção mínima nas compressões, assume posição de destaque nesta atualização. Não se deve levar mais de dez segundos verificando o pulso antes de iniciar a RCP. A relação universal de 30:2 é mantida, modificando-se sua ordem de realização, iniciando-se pelas compressões torácicas, para, em seguida, prosseguir para as vias aéreas e respiração (C-A-B, em vez de A-B-C). O procedimento "ver, ouvir e sentir se há respiração" foi removido do algoritmo e o uso de pressão cricoidea durante as ventilações, em geral, não é mais recomendado. A frequência das compressões foi modificada para um mínimo de cem por minuto, em vez de aproximadamente cem por minuto, sendo sua profundidade em adultos alterada para 5 cm, em lugar da faixa antes recomendada de 4 a 5 cm. Choque único é mantido, devendo ser de 120 a 200 J quando bifásico, ou 360 J quando monofásico. No suporte avançado de vida, o uso de capnografia e capnometria para confirmação da intubação e monitoração da qualidade da RCP é uma recomendação formal. A atropina não é mais recomendada para uso rotineiro no tratamento da atividade elétrica sem pulso ou assistolia. CONCLUSÕES: É importante a atualização quanto às novas diretrizes de RCP, sendo enfatizado o contínuo aprendizado. Isso irá melhorar a qualidade da reanimação e sobrevida de pacientes em parada cardíaca

Palavras-chave

COMPLICAÇÕES, Parada cardiorrespiratória, REANIMAÇÃO

Abstract

BACKGROUND AND OBJECTIVES: The new cardiopulmonary resuscitation (CPR) guidelines emphasize the importance of high-quality chest compressions and modify some routines. The objective of this report was to review the main changes in resuscitation practiced by anesthesiologists. CONTENTS: The emphasis on high-quality chest compressions with adequate rate and depth allowing full recoil of the chest and with minimal interruptions is highlighted in this update. One should not take more than ten seconds checking the pulse before starting CPR. The universal relationship of 30:2 is maintained, modifying its order, initiating with chest compressions, followed by airways and breathing (C-A-B instead of A-B-C). The procedure "look, listen, and feel whether the patient is breathing" was removed from the algorithm, and the use of cricoid pressure during ventilations is not recommended any more. The rate of chest compressions was changed for at least one hundred per minute instead of approximately one hundred per minute, and its depth in adults was changed to 5 cm instead of the prior recommendation of 4 to 5 cm. The single shock is maintained, and it should be of 120 to 200 J when it is biphasic; and 360 J when it is monophasic. In advanced cardiac life support, the use of capnography and capnometry to confirm intubation and monitoring the quality of CPR is a formal recommendation. Atropine is no longer recommended for routine use in the treatment of pulseless electrical activity or asystole. CONCLUSIONS: Updating the phases of the new CPR guidelines is important, and continuous learning is recommended. This will improve the quality of resuscitation and survival of patients in cardiac arrest

Keywords

Cardiopulmonary Resuscitation, Heart Arrest, Heart Massage

References

Stiell IG, Wells GA, Field B. Advanced cardiac life support in out-of-hospital cardiac arrest. N Engl J Med. 2004;351:647-656.

Chan RPC, Auler Jr JOC. Estudo restrospectivo da incidência de óbitos anestésico-cirúrgicos nas primeiras 24 horas: Revisão de 82.641 anestesias. Rev Bras Anestesiol. 2002;52:719-727.

Pedersen T. Complications and death following anaesthesia: Aprospective study with special reference to the influence of patient-anaesthesia and surgery-related risk factors. Dan Med Bull. 1994;41:319- 331.

Braz LG, Braz JRC, Módolo NSP. Incidência de parada cardíaca durante anestesia, em hospital universitário de atendimento terciário: Estudo prospectivo entre 1996 e 2002. Rev Bras Anestesiol. 2004;54(6):755-768.

Timerman S, Gonzalez MMC, Ramires JAF. Rumo ao consenso internacional de ressuscitação cardiopulmonar e cuidados cardiovasculares de emergência 2010 da Aliança Internacional dos Comitês de Ressuscitação. Rev Bras Clin Med. 2010;8(3):228-37.

Berg RA, Hemphill R, Abella BS. Adult Basic life support: 2010 American Heart Association guidelines for cardiopulmonary ressuscitation and emergency cardiovascular care. Circulation. 2010;122(^s3):S685-S705.

Christenson J, Andrusiek D, Everson-Stewart S. Chest compression fraction determines survival in patients with out-of-hospital ventricular fibrillation. Circulation. 2009;120:1241-1247.

Berdowski J, Beekhuis F, Zwinderman AH. Importance of the first link: description and recognition of an out-ofhospitalcardiac arrest in an emergency call. Circulation. 2009;119:2096-2102.

Lapostolle F, Le Toumelin P, Agostinucci JM. Basic cardiac life support providers checking the carotid pulse: performance, degree of conviction, and influencing factors. Acad Emerg Med. 2004;11:878- 880.

Ochoa FJ, Ramalle-Gomara E, Carpintero JM. Competence of health professionals to check the carotid pulse. Resuscitation. 1998;37:173-175.

Olasveengen TM, Wik L, Steen PA. Standard basic life support vs. continuous chest compressions only in out-of-hospital cardiac arrest. Acta Anaesthesiol Scand. 2008;52:914-919.

Ong ME, Ng FS, Anushia P. Comparison of chest compression only and standard cardiopulmonary resuscitation for out-of-hospital cardiac arrest in Singapore. Resuscitation. 2008;78:119-126.

Bohm K, Rosenqvist M, Herlitz J. Survival is similar after standard treatment and chest compression only in out-ofhospital bystander cardiopulmonary resuscitation. Circulation. 2007;116:2908-2912.

Sugerman NT, Edelson DP, Leary M. Rescuer fatigue during actual in-hospital cardiopulmonary resuscitation with audiovisual feedback: a prospective multicenter study. Resuscitation. 2009;80:981-984.

Manders S, Geijsel FE. Alternating providers during continuous chest compressions for cardiac arrest: every minute or every two minutes?. Resuscitation. 2009;80:1015-1018.

Heidenreich JW, Berg RA, Higdon TA. Rescuer fatigue: standard versus continuous chest-compression cardiopulmonary resuscitation. Acad Emerg Med. 2006;13:1020-1026.

Rhee P, Kuncir EJ, Johnson L. Cervical spine injury is highly dependent on the mechanism of injury following blunt and penetrating assault. J Trauma. 2006;61:1166-1170.

Lowery DW, Wald MM, Browne BJ. Epidemiology of cervical spine injury victims. Ann Emerg Med. 2001;38:12-16.

Milby AH, Halpern CH, Guo W. Prevalence of cervical spinal injury in trauma. Neurosurg Focus. 2008;25.

Mithani SK, St-Hilaire H, Brooke BS. Predictable patterns of intracranial and cervical spine injury in craniomaxillofacial trauma: analysis of 4786 patients. Plast Reconstr Surg. 2009;123:1293-1301.

Hackl W, Hausberger K, Sailer R. Prevalence of cervical spine injuries in patients with facial trauma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;92:370-376.

Holly LT, Kelly DF, Counelis GJ. Cervical spine trauma associated with moderate and severe head injury: incidence, risk factors, and injury characteristics. J Neurosurg Spine. 2002;96:285-291.

Demetriades D, Charalambides K, Chahwan S. Nonskeletal cervical spine injuries: epidemiology and diagnostic pitfalls. J Trauma. 2000;48:724-727.

Rhee P, Kuncir EJ, Johnson L. Cervical spine injury is highly dependent on the mechanism of injury following blunt and penetrating assault. J Trauma. 2006;61:1166-1170.

Baskett P, Nolan J, Parr M. Tidal volumes which are perceived to be adequate for resuscitation. Resuscitation. 1996;31:231-234.

Berg RA, Kern KB, Hilwig RW. Assisted ventilation does not improve outcome in a porcine model of single-rescuer bystander cardiopulmonary resuscitation. Circulation. 1997;95:1635-1641.

Berg RA, Kern KB, Hilwig RW. Assisted ventilation during 'bystander' CPR in a swine acute myocardial infarction model does not improve outcome. Circulation. 1997;96:4364-4371.

Tang W, Weil MH, Sun S. Cardiopulmonary resuscitation by precordial compression but without mechanical ventilation. Am J Respir Crit Care Med. 1994;150(6):1709-1713.

Wenzel V, Keller C, Idris AH. Effects of smaller tidal volumes during basic life support ventilation in patients with respiratory arrest: good ventilation, less risk?. Resuscitation. 1999;43:25-29.

Dorges V, Ocker H, Hagelberg S. Smaller tidal volumes with room-air are not sufficient to ensure adequate oxygenation during bag-valve-mask ventilation. Resuscitation. 2000;44:37-41.

Dorges V, Ocker H, Hagelberg S. Optimisation of tidal volumes given with self-inflatable bags without additional oxygen. Resuscitation. 2000;43:195-199.

Berg MD, Idris AH, Berg RA. Severe ventilatory compromise due to gastric distention during pediatric cardiopulmonary resuscitation. Resuscitation. 1998;36:71-73.

Garnett AR, Ornato JP, Gonzalez ER. End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation. JAMA. 1987;257:512-515.

Aufderheide TP, Sigurdsson G, Pirrallo RG. Hyperventilationinduced hypotension during cardiopulmonary resuscitation. Circulation. 2004;109:1960-1965.

Sayre MR, Berg RA, Cave DM. Hands-only (compressiononly) cardiopulmonary resuscitation: a call to action for bystander response to adults who experience out-of-hospital sudden cardiac arrest: a science advisory for the public from the American Heart Association Emergency Cardiovascular Care Committee. Circulation. 2008;117:2162-2167.

Berg RA, Sanders AB, Kern KB. Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest. Circulation. 2001;104:2465-2470.

Kern KB, Hilwig RW, Berg RA. Importance of continuous chest compressions during cardiopulmonary resuscitation: improved outcome during a simulated single lay-rescuer scenario. Circulation. 2002;105:645-649.

Kitamura T, Iwami T, Kawamura T. Conventional and chestcompression- only cardiopulmonary resuscitation by bystanders for children who have out-of-hospital cardiac arrests: a prospective, nationwide, population-based cohort study. 2010.

Berg RA, Hilwig RW, Kern KB. "Bystander" chest compressions and assisted ventilation independently improve outcome from piglet asphyxial pulseless "cardiac arrest.". Circulation. 2000;101:1743- 1748.

McNelis U, Syndercombe A, Harper I. The effect of cricoid pressure on intubation facilitated by the gum elastic bougie. Anaesthesia. 2007;62:456-459.

Harry RM, Nolan JP. The use of cricoid pressure with the intubating laryngeal mask. Anaesthesia. 1999;54:656-659.

Noguchi T, Koga K, Shiga Y. The gum elastic bougieeases tracheal intubation while applying cricoid pressure compared to a stylet. Can J Anaesth. 2003;50:712-717.

Asai T, Murao K, Shingu K. Cricoid pressure applied after placement of laryngeal mask impedes subsequent fibreoptic tracheal intubation through mask. Br J Anaesth. 2000;85:256-261.

Snider DD, Clarke D, Finucane BT. The "BURP" maneuver worsens the glottic view when applied in combination with cricoid pressure. Can J Anaesth. 2005;52:100-104.

Smith CE, Boyer D. Cricoid pressure decreases ease of tracheal intubation using fibreoptic laryngoscopy (WuScope System). Can J Anaesth. 2002;49:614-619.

Asai T, Barclay K, Power I. Cricoid pressure impedes placement of the laryngeal mask airway and subsequent tracheal intubation through the mask. Br J Anaesth. 1994;72:47-51.

Eftestol T, Wik L, Sunde K. Effects of cardiopulmonary resuscitation on predictors of ventricular fibrillation defibrillation success during out-of-hospital cardiac arrest. Circulation. 2004;110:10-15.

Bobrow BJ, Clark LL, Ewy GA. Minimally interrupted cardiac resuscitation by emergency medical services for out-of-hospital cardiac arrest. JAMA. 2008;299:1158 -1165.

Rea TD, Helbock M, Perry S. Increasing use of cardiopulmonary resuscitation during out-ofhospital ventricular fibrillation arrest: survival implications of guideline changes. Circulation. 2006;114:2760- 2765.

Berg MD, Samson RA, Meyer RJ. Pediatric defibrillation doses often fail to terminate prolonged out-ofhospital ventricular fibrillation in children. Resuscitation. 2005;67:63-67.

Rodriguez-Nunez A, Lopez-Herce J, Garcia C. Pediatric defibrillation after cardiac arrest: initial response and outcome. Crit Care. 2006;10.

Tibballs J, Carter B, Kiraly NJ. External and internal biphasic direct current shock doses for pediatric ventricular fibrillation and pulseless ventricular tachycardia. Pediatr Crit Care Med. 2011;12(1):14- 20.

Atkins DL, Hartley LL, York DK. Accurate recognition and effective treatment of ventricular fibrillation by automated external defibrillators in adolescents. Pediatrics. 1998;101:393-397.

Rossano JW, Quan L, Kenney MA. Energy doses for treatment of out-of-hospital pediatric ventricular fibrillation. Resuscitation. 2006;70:80-89.

Gurnett CA, Atkins DL. Successful use of a biphasic waveform automated external defibrillator in a high-risk child. Am J Cardiol. 2000;86:1051-1053.

Atkins DL, Jorgenson DB. Attenuated pediatric electrode pads for automated external defibrillator use in children. Resuscitation. 2005;66:31-37.

England H, Hoffman C, Hodgman T. Effectiveness of automated external defibrillators in high schools in greater Boston. Am J Cardiol. 2005;95:1484-1486.

Boodhoo L, Mitchell AR, Bordoli G. Cardioversion of persistent atrial fibrillation: a comparison of two protocols. Int J Cardiol. 2007;114:16-21.

Brazdzionyte J, Babarskiene RM, Stanaitiene G. Anterior-posterior versus anterior-lateral electrode position for biphasic cardioversion of atrial fibrillation. Medicina. 2006;42:994-998.

Chen CJ, Guo GB. External cardioversion in patients with persistent atrial fibrillation: a reappraisal of the effects of electrode pad position and transthoracic impedance on cardioversion success. Jpn Heart J. 2003;44:921-932.

Stanaitiene G, Babarskiene RM. Impact of electrical shock waveform and paddle positions on efficacy of direct current cardioversion for atrial fibrillation. Medicina. 2008;44:665-672.

Krasteva V, Matveev M, Mudrov N. Transthoracic impedance study with large self-adhesive electrodes in two conventional positions for defibrillation. Physiol Meas. 2006;27:1009-1022.

Manegold JC, Israel CW, Ehrlich JR. External cardioversion of atrial fibrillation in patients with implanted pacemaker or cardioverterdefibrillator systems: a randomized comparison of monophasic and biphasic shock energy application. Eur Heart J. 2007;28:1731-1738.

Alferness CA. Pacemaker damage due to external countershock in patients with implanted cardiac pacemakers. Pacing Clin Electrophysiol. 1982;5:457-458.

Liu Y, Rosenthal RE, Haywood Y. Normoxic ventilation after cardiac arrest reduces oxidation of brain lipids and improves neurological outcome. Stroke. 1998;29:1679-1686.

Zwemer CF, Whitesall SE, D'Alecy LG. Cardiopulmonary-cerebral resuscitation with 100% oxygen exacerbates neurological dysfunction following nine minutes of normothermic cardiac arrest in dogs. Resuscitation. 1994;27:159-170.

Lipinski CA, Hicks SD, Callaway CW. Normoxic ventilation during resuscitation and outcome from asphyxial cardiac arrest in rats. Resuscitation. 1999;42:221-229.

Bailey AR, Hett DA. The laryngeal mask airway in resuscitation. Resuscitation. 1994;28:107-110.

Dorges V, Wenzel V, Knacke P. Comparison of different airway management strategies to ventilate apneic, nonpreoxygenated patients. Crit Care Med. 2003;31:800-804.

Wong ML, Carey S, Mader TJ. Time to invasive airway placement and resuscitation outcomes after inhospital cardiopulmonary arrest. Resuscitation. 2010;81:182-186.

Stone BJ, Chantler PJ, Baskett PJ. The incidence of regurgitation during cardiopulmonary resuscitation: a comparison between the bag valve mask and laryngeal mask airway. Resuscitation. 1998;38:3-6.

The use of the laryngeal mask airway by nurses during cardiopulmonary resuscitation: results of a multicentre trial. Anaesthesia. 1994;49:3-7.

Samarkandi AH, Seraj MA, el Dawlatly A. The role of laryngeal mask airway in cardiopulmonary resuscitation. Resuscitation. 1994;28:103-106.

Rumball CJ, MacDonald D. The PTL, Combitube, laryngeal mask, and oral airway: a randomized prehospital comparative study of ventilatory device effectiveness and cost-effectiveness in 470 cases of cardiorespiratory arrest. Prehosp Emerg Care. 1997;1:1-10.

Tanigawa K, Shigematsu A. Choice of airway devices for 12,020 cases of nontraumatic cardiac arrest in Japan. Prehosp Emerg Care. 1998;2:96-100.

Silvestri S, Ralls GA, Krauss B. The effectiveness of out-of-hospital use of continuous end-tidal carbon dioxide monitoring on the rate of unrecognized misplaced intubation within a regional emergency medical services system. Ann Emerg Med. 2005;45:497-503.

Tong YL, Sun M, Tang WH. The tracheal detecting-bulb: a new device to distinguish tracheal from esophageal intubation. Acta Anaesthesiol Sin. 2002;40:159-163.

Kolar M, Krizmaric M, Klemen P. Partial pressure of end-tidal carbon dioxide successful predicts cardiopulmonary resuscitation in the field: a prospective observational study. Crit Care. 2008;12.

Grmec S, Mally S. Timeliness of administration of vasopressors in CPR. Crit Care. 2009;13.

Pokorna M, Necas E, Kratochvil J. A sudden increase in partial pressure end-tidal carbon dioxide (P(ET)CO(2)) at the moment of return of spontaneous circulation. J Emerg Med. 2009;38:614-621.

Grmec S, Krizmaric M, Mally S. Utstein style analysis of out-ofhospital cardiac arrest- bystander CPR and end expired carbon dioxide. Resuscitation. 2007;72:404-414.

Connick M, Berg RA. Femoral venous pulsations during open-chest cardiac massage. Ann Emerg Med. 1994;24:1176 -1179.

Okamoto H, Hoka S, Kawasaki T. Changes in end-tidal carbon dioxide tension following sodium bicarbonate administration: correlation with cardiac output and haemoglobin concentration. Acta Anaesthesiol Scand. 1995;39:79-84.

Cantineau JP, Merckx P, Lambert Y. Effect of epinephrine on end-tidal carbon dioxide pressure during prehospital cardiopulmonary resuscitation. Am J Emerg Med. 1994;12:267-270.

Grmec S, Kupnik D. Does the Mainz Emergency Evaluation Scoring (MEES) in combination with capnometry (MEESc) help in the prognosis of outcome from cardiopulmonary resuscitation in a prehospital setting?. Resuscitation. 2003;58:89-96.

Nakatani K, Yukioka H, Fujimori M. Utility of colorimetric endtidal carbon dioxide detector for monitoring during prehospital cardiopulmonary resuscitation. Am J Emerg Med. 1999;17:203-206.

Halperin HR, Tsitlik JE, Gelfand M. A preliminary study of cardiopulmonary resuscitation by circumferential compression of the chest with use of a pneumatic vest. N Engl J Med. 1993;329:762- 768.

Paradis NA, Martin GB, Rivers EP. Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA. 1990;263:1106-1113.

Rivers EP, Martin GB, Smithline H. The clinical implications of continuous central venous oxygen saturation during human CPR. Ann Emerg Med. 1992;21:1094-1101.

Memtsoudis SG, Rosenberger P, Loffler M. The usefulness of transesophageal echocardiography during intraoperative cardiac arrest in noncardiac surgery. Anesth Analg. 2006;102:1653-1657.

Niendorff DF, Rassias AJ, Palac R. Rapid cardiac ultrasound of inpatients suffering PEA arrest performed by nonexpert sonographers. Resuscitation. 2005;67:81- 87.

Tayal VS, Kline JA. Emergency echocardiography to detect pericardial effusion in patients in PEA and near-PEA states. Resuscitation. 2003;59:315-318.

Yakaitis RW, Otto CW, Blitt CD. Relative importance of alpha and beta and adrenergic receptors during resuscitation. Crit Care Med. 1979;7:293-296.

Michael JR, Guerci AD, Koehler RC. Mechanisms by which epinephrine augments cerebral and myocardial perfusion during cardiopulmonary resuscitation in dogs. Circulation. 1984;69:822-835.

Aung K, Htay T. Vasopressin for cardiac arrest: a systematic review and meta-analysis. Arch Intern Med. 2005;165:17-24.

Engdahl J, Bang A, Lindqvist J. Can we define patients with no and those with some chance of survival when found in asystole out of hospital?. Am J Cardiol. 2000;86:610-614.

Engdahl J, Bang A, Lindqvist J. Factors affecting short- and long-term prognosis among 1069 patients with out-of-hospital cardiac arrest and pulseless electrical activity. Resuscitation. 2001;51:17-25.

Kette F, Weil MH, Gazmuri RJ. Buffer solutions may compromise cardiac resuscitation by reducing coronary perfusion presssure. JAMA. 1991;266:2121-2126.

Graf H, Leach W, Arieff AI. Evidence for a detrimental effect of bicarbonate therapy in hypoxic lactic acidosis. Science. 1985;227:754- 756.

van Walraven C, Stiell IG, Wells GA. Do advanced cardiac life support drugs increase resuscitation rates from in-hospital cardiac arrest?: The OTAC Study Group. Ann Emerg Med. 1998;32:544 -553.

5dd6a33d0e8825802d13f286 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections