Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1590/S0034-70942010000200008
Brazilian Journal of Anesthesiology
Scientific Article

Avaliação de parâmetros antioxidantes em ratos tratados com sevoflurano

Evaluation of antioxidant parameters in eats treated with sevoflurane

Francisco J. L Bezerra; Nilton Bezerra do Vale; Brunno de Oliveira Macedo; Adriana Augusto Rezende; Maria das Graças Almeida

Downloads: 0
Views: 717

Resumo

JUSTIFICATIVA E OBJETIVOS: O sevoflurano é um éter halogenado com flúor que sofre biotransformação hepática através do citocromo P450 2E1. Éteres halogenados que sofrem biotransformação pelo P450 2E1 podem produzir espécies reativas do oxigênio (ERO) e promover enfraquecimento do sistema de defesa antioxidante. O objetivo deste trabalho foi investigar a relação entre a atividade das enzimas antioxidantes eritrocitárias e o sevoflurano. MÉTODO: Os animais foram distribuídos em quatro grupos: Grupo 1 controle: apenas oxigênio a 100% (1 L.min-1 por 60 minutos durante 5 dias consecutivos); Grupo 2 - sevoflurane 4,0% em oxigênio a 100% (1 L.min-1 por 60 minutos durante 5 dias consecutivos); Grupo 3 - isoniazida (i.p.), 50 mg.kg-1 de peso corporal /dia, durante 4 dias e em seguida tratados apenas com oxigênio a 100% (1 L.min-1 por 60 minutos durante 5 dias consecutivos); Grupo 4 - isoniazida por via intraperitoneal na dose de 50 mg.kg-1 de peso corporal, diariamente durante 4 dias, seguido da administração do sevoflurane a 4,0% em oxigênio a 100% (1 L.min-1 por 60 minutos durante 5 dias). Após 12 horas da última exposição ao sevoflurane, os animais foram sacrificados e o sangue foi coletado através da veia porta para análise da atividade das enzimas antioxidantes. RESULTADOS: Aumento da atividade específica da glicose-6-fosfato desidrogenase, diminuição da atividade específica da catalase, principalmente no grupo de animais pré-tratados com isoniazida e, em seguida, tratados com sevoflurano. A glutationa peroxidase não apresentou alteração na sua atividade. CONCLUSÕES: A interação do sevoflurano com indutores enzimáticos do citocromo P450 2E1 pode propiciar a instalação do estresse oxidativo caso a exposição se torne prolongada e repetitiva.

Palavras-chave

ANESTÉSICOS, Volátil, ANIMAIS, DROGAS, Antioxidantes, METABOLISMO

Abstract

BACKGROUND AND OBJECTIVES: Sevoflurane is a halogenated fluorinated ether that undergoes hepatic biotransformation through cytochrome P4502E1. Halogenated ethers undergoing biotransformation by P4502E1 can produce reactive oxygen species (ROS), weakening the antioxidant defense mechanism. The objective of this study was to investigate the relationship between the activity of erythrocyte antioxidant enzymes and sevoflurane. METHODS: Animals were divided in four groups: Group 1 - control: 100% oxygen (1 L.min-1 for 60 min during five consecutive days); Group 2 - 4.0% sevoflurane in 100% oxygen (1 L.min-1 for 60 minutes during five consecutive days); Group 3 - isoniazid (i.p.), 50 mg.kg-1/ day for four consecutive days, followed by 100% oxygen (1 L.min-1 for 60 minutes during four consecutive days); Group 4 - intraperitoneal isoniazid, 50 mg.kg-1 daily for four days, followed by 4.0% sevoflurane in 100% oxygen (1 L.min-1 for 60 minutes during five days). Twelve hours after the last exposure to sevoflurane, animals were sacrificed and their blood was collected through the portal vein for analysis of antioxidant enzymes. RESULTS: An increase in the activity of glucose-6-phosphate dehydrogenase and a decrease in the activity of catalase were observed, especially in the group of animals pre-treated with isoniazid. Changes in the activity of glutathione peroxidase were not observed. CONCLUSIONS: The interaction between sevoflurane and cytochrome P450 2E1 with enzymatic inducers can lead to oxidative stress with prolonged and repetitive exposure.

Keywords

ANESTHETICS, Volatile, ANIMALS, DRUGS, Antioxidants, METABOLISM

References

Delfino J, Vale NB, Magalhães E. Estudo comparativo entre sevoflurano e halotano para cirurgia pediátrica de curta duração. Rev Bras Anestesiol. 1997;47:10-15.

Stachnik J. Inhaled anesthetic agents. Am J Health Syst Pharm. 2006;63:623-634.

Kharasch ED, Thummel KE. Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane and methoxyflurane. Anesthesiology. 1993;79:795-807.

Intengan HD, Schiffrin EL. Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension. 2001;38:581-587.

Valko M, Izakovic M, Mazur M. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266:37-56.

Hensley K, Robinson KA, Gabbita SP. Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med. 2000;28:1456-1462.

Barreiros ALBS, David JM, David JP. Estresse oxidativo: relação entre geração de espécies reativas e defesa do organismo. Quim Nova. 2006;29:113-120.

Cederbaum AI. CYP2E1: Biochemical and toxicological aspects and role in alcohol-induced liver injury. Mt Sinai J Med. 2006;73:657-672.

Koop DR. Alcohol metabolism's damaging effects on the cell: a focus on reactive oxygen generation by the enzyme cytochrome P450 2E1. Alcohol Res Health. 2006;29:274-280.

Kevin LG, Novalija E, Riess ML. Sevoflurane exposure generates superoxide but leads to decreased superoxide during ischemia and reperfusion in isolated hearts. Anesth. Analg. 2003;96:949-955.

Wong CH, Liu TZ, Chye SM. Sevoflurane-induced oxidative stress and cellular injury in human peripheral polymorphonuclear neutrophils. Food Chem Toxicol. 2006;44:1399-1407.

Sato N, FujiI K, Yuge O. In vivo and in vitro sevoflurane-induced lipid peroxidation in guinea-pig liver microsomes. Pharmacol Toxicol. 1994;75:366-370.

Türkan H, Aydin A, Sayal A. Effect of volatile anesthetics on oxidative stress due to occupational exposure. World J Surg. 2005;29:540-542.

Riess ML, Kevin LG, McCormick J. Anesthetic preconditioning: the role of free radicals in sevoflurane-induced attenuation of mitochondrial electron transport in Guinea pig isolated hearts. Anesth Analg. 2005;100:46-53.

Novalija E, Varadarajan SG, Camara AK. Anesthetic preconditioning: triggering role of reactive oxygen and nitrogen species in isolated hearts. Am J Physiol Heart Circ Physiol. 2002;283:H44-52.

De Hert SG, Turani F, Mathur S. Cardioprotection with volatile anesthetics: mechanisms and clinical implications. Anesth Analg. 2005;100:1584-1593.

Beutler E. Red Cell Metabolism: a manual of biochemical methods. 1984.

Sies H, Koch OR, Martino . Increased biliary glutathione disulfide release in chronically ethanol-treated rats. FEBS Lett. 1979;103:287-290.

Ho HY, Cheng ML, Chiu DT. Glucose-6-phosphate dehydrogenase: from oxidative stress to cellular function and degenerative diseases. Redox Rep. 2007;12:109-118.

Gonzalez FJ. The 2006 Bernard B Brodie Award Lecture: Cyp2e1. Drug Metab Dispos. 2007;35:1-8.

Kharasch ED, Armstrong AS, Gunn K. Clinical sevoflurane metabolism and disposition: II. The role of cytochrome P450 2E1 in fluoride and hexafluoroisopropanol formation. Anesthesiology. 1995;82:1379-1388.

Rice SA, Sbordone L, Mazze RI. Metabolism by rat hepatic microsomes of fluorinated ether anesthetics following isoniazid administration. Anesthesiology. 1980;53:489-493.

Park KS, Sohn DH, Veech RL. Translational activation of ethanol-inducible cytochrome P450 (CYP2E1) by isoniazid. Eur J Pharmacol. 1993;248:7-14.

Motta MV, Souza DN, Nicolau J. Effects of subtoxic doses of fluoride on some enzymes of the glucose metabolism in submandibular salivary glands of fed and overnight-fasted rats. Fluoride. 1999;32:20-26.

Rzeuski R, Chlubek D, Machoy Z. Interactions between fluoride and biological free radical reactions. Fluoride. 1998;31:43-45.

Altikat S, Çiftçi M, Büyükokuro#lu ME. In vitro effects of some anesthetic drugs on enzymatic activity of human red blood cell glucose-6phosphate dehydrogenase. Pol J Pharmacol. 2002;54:67-71.

Kirkman HN, Galiano S, Gaetani GF. The function of catalase-bound NADPH. J Biol Chem. 1987;262:660-666.

Thibodeau EA, Keefe TF. pH: dependent fluoride inhibition of catalase activity. Oral Microbiol Immunol. 1990;5(6):328-31.

Zhan XA, Wang M, Xu ZR. Effects of fluoride on hepatic antioxidant system and transcription of Cu/Zn SOD gene in young pigs. J Trace Elem Med Biol. 2006;20:83-87.

Yesilkaya A, Ertug Z, Yegin A. Deformability and oxidant stress in the red blood cells under the influence of halothane and isoflurane anesthesia. Gen Pharmacol. 1998;31:33-36.

Durak I, Guven T, Birey M. Halothane hepatotoxicity and hepatic free radical metabolism in guinea pigs; the effects of vitamin E. Can. J. Anaesth. 1996;43:741-748.

Bezerra FJL, Rezende AA, Rodrigues SJ. Thiobarbituric acid reactive substances as an index of lipid peroxidation in sevofluranetreated rats. Rev Bras Anestesiol. 2004;54:640-649.

Dikmen B, Unal Y, Pampal HK. Effects of repeated desflurane and sevoflurane anesthesia on enzymatic free radical scavenger system. Mol Cell Biochem. 2007;294:31-36.

Riess ML, Stowe DF, Warltier DC. Cardiac pharmacological preconditioning with volatile anesthetics: from bench to bedside?. Am J Physiol Heart Circ Physiol. 2004;286:H1603-1607.

Bouwman RA, Musters RJ, Van Beek-Harmsen BJ. Reactive oxygen species precede protein kinase C-delta activation independent of adenosine triphosphate: sensitive mitochondrial channel opening in sevoflurane-induced cardioprotection. Anesthesiology. 2004;100:506-514.

Yoshida K, Okabe E. Selective impairment of endothelium-dependent relaxation: by sevoflurane oxygen free radicals participation. Anesthesiology. 1992;76:440-447.

Cemek M, Caksen H, Bayiro#u F. Oxidative stress and enzymic-non-enzymic antioxidant responses in children with acute pneumonia. Cell Biochem Funct. 2006;24:269-273.

Koksal GM, Sayilgan C, Aydin S. The effects of sevoflurane and desflurane on lipid peroxidation during laparoscopic cholecystectomy. Eur J Anaesthesiol. 2004;21:217-220.

Urena R, Mendez F, Ruiz-Deya G. Does prolonged pneumoperitoneum affect oxidative stress compared with open surgical procedures?. J Endourol. 2005;19:221-224.

Cappellini MD, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency. Lancet. 2008;371:64-74.

Spolarics Z. Endotoxemia, pentose cycle, and the oxidant/antioxidant balance in the hepatic sinusoid. J Leukoc Biol. 1998;63:534-541.

Gaetani GF, Ferraris AM, Rolfo M. Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood. 1996;87:1595-1599.

Massa EC, Federmann S. Ambulatory anesthesia in deficiency glucose 6-phosphate dehydrogenase. Internet J Anesthesiol. 2007;11(2).

Huang CH, Wang YP, Wu PY. Propofol infusion shortens and attenuates oxidative stress during one lung ventilation. Acta Anaesthesiol Taiwan. 2008;46:160-165.

5dd2e4560e88259429c63493 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections