Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1590/S0034-70942009000100006
Brazilian Journal of Anesthesiology
Scientific Article

Impacto da parada cardíaca induzida nas funções cognitivas após o implante de cardiodesfibrilador

Impact of induced cardiac arrest on cognitive function after implantation of a cardioverter-defibrillator

Mauro Prado da Silva; Luiz Antonio Rivetti; Lígia Andrade Silva Telles Mathias; Guilherme Cagno; Christiano Matsui

Downloads: 0
Views: 1052

Resumo

JUSTIFICATIVA E OBJETIVOS: O cardiodesfibrilador implantável (CDI) foi introduzido na prática clínica em 1980 e é considerado o tratamento-padrão para indivíduos sob risco de desenvolverem disritmias ventriculares fatais. Com o intuito de garantir funcionamento adequado do cardiodesfibrilador, a energia necessária para o término da taquicardia ventricular ou da fibrilação ventricular deve ser determinada durante o implante, sendo esse procedimento chamado de teste do limiar de desfibrilação. Para a realização do teste é necessário que seja feita indução de fibrilação ventricular, para que o aparelho possa identificar o ritmo cardíaco e tratá-lo. O objetivo deste estudo foi verificar a ocorrência de disfunção cognitiva 24 horas após o implante de cardiodesfibrilador. MÉTODO: Foi selecionada uma amostra consecutiva de 30 pacientes com indicação de colocação de cardiodesfibrilador implantável (CDI) e 30 pacientes com indicação de implante de marca-passo (MP). Os pacientes foram avaliados nos seguintes momentos: 24 horas antes da colocação do CDI ou MP com ficha de avaliação pré-anestésica, Mini Exame do Estado Mental (MEEM) e Confusion Assessment Method (CAM). Durante o implante do CDI ou MP foram medidas as variáveis: número de paradas cardíacas e tempo total de parada cardíaca. Vinte e quatro horas após colocação do CDI ou MP, foram avaliadas as variáveis: MEEM e CAM. RESULTADOS: O teste de Fisher comprovou não haver diferença da freqüência de escores alterados do MEEM e do CAM entre os grupos antes e depois dos implantes. O tempo médio de PCR foi 7,06 segundos, com máximos e mínimos de 15,1 e 4,7 segundos. CONCLUSÕES: A indução de parada cardíaca durante o teste do limiar de desfibrilação não levou à disfunção cognitiva 24 horas após o implante de cardiodesfibrilador.

Palavras-chave

CIRURGIA, Cardíaca, COMPLICAÇÕES, COMPLICAÇÕES, COMPLICAÇÕES, EQUIPAMENTOS, marca-passo

Abstract

BACKGROUND AND OBJECTIVES: Implantable cardioverter-defibrillators (ICD) were introduced in clinical practice in 1980 and they are considered the standard treatment for individuals at risk for fatal ventricular arrhythmias. To ensure proper working conditions, the energy necessary to interrupt ventricular tachycardia or ventricular fibrillation should be determined during implantation by a test called defibrillation threshold. For this test, it is necessary to induce ventricular fibrillation, which should be identified and treated by the device. The objective of the present study was to determine the frequency of cognitive dysfunction 24 hours after the implantation of a cardioverter-defibrillator. METHODS: Thirty consecutive patients with indication of cardioverter-defibrillator (ICD) placement and 30 patients with indication of implantable pacemaker (PM) were enrolled in this study. Patients were evaluated at the following moments: 24 hours before placement of the ICD or PM with a pre-anesthetic evaluation form, Mini Mental State Examination (MMSE), and Confusion Assessment Method (CAM); during implantation of the ICD or PM, the following parameters were determined: number of cardiac arrests and total time of cardiac arrest. Twenty-four hours after placement of the device, the following parameters were evaluated: MMSE and CAM. RESULTS: Differences in the frequency of altered MMSE and CAM scores between both groups before and after implantation were not detected by the Fisher Exact test. The mean time of cardiac arrest was 7.06 seconds, with a maximal of 15.1 and minimal of 4.7 seconds. CONCLUSIONS: Induction of cardiac arrest during defibrillation threshold testing did not cause cognitive dysfunction 24 hours after implantation of the cardioverter-defibrillator.

 

References

Trappe HJ, Wenzlaff P, Pfitzner P. Long-term follow up of patients with implantable cardiovertor-defibrillators and mild, moderate, or severe impairment of left ventricular function. Heart. 1997;78:243-249.

Cunningham AD, Plummer CJ, McComb JM. The implantable cardiovertor-defibrillator: postcode prescribing in the UK 1998-2002. Heart. 2005;91:1280-1283.

Koller MT, Schaer B, Wolbers M. Death without prior appropriate implantable cardiovertor-defibrillator therapy: a competing risk study. Circulation. 2008;117:1918-1926.

Rönn F, Kesek M, Höglund N. Long-term follow-up of patients treated with ICD: benefit in patients with preserved left ventricular function. Scand Cardiovasc J. 2008;42:125-129.

Thibodeau JB, Pillarisetti J, Khumri TM. Mortality rates and clinical predictors of reduced survival after cardiovertor-defibrillator implantation. Am J Cardiol. 2008;101:861-864.

Leong-Sit P, Gula LJ, Diamantouros P. Effect of defibrillation testing on management during implantable cardiovertor-defibrillator implantation. Am Heart J. 2006;152:1104-1108.

Schuger C, Ellenbogen KA, Faddis M. Defibrillation energy requirements in an ICD population receiving cardiac resynchronization therapy. J Cardiovasc Electrophysiol. 2006;17:247-250.

Pires LA, Johnson KM. Intraoperative testing of the implantable cardiovertor-defibrillator: how much is enough?. J Cardiovasc Electrophysiol. 2006;17:140-145.

Rao VL, Dogan A, Bowen KK. Traumatic injury to rat brain upregulates neuronal nitric oxide synthase expression and L-[3H]nitroarginine binding. J Neurotrauma. 1999;16:865-877.

Hattori K, Lee H, Hurn PD. Cognitive deficits after focal cerebral ischemia in mice. Stroke. 2000;31:1939-1944.

Dorman BH, Conroy JM, Baker JD. Cerebral monitoring during implantation of automatic internal cardiac defibrillators. South Med J. 1993;86:533-536.

Behrens S, Spies C, Neumann U. Cerebral ischemia during implantation of automatic defibrillators. Z Kardiol. 1995;84:798-807.

Vriens EM, Bakker PF, Vries JW. The impact of repeated short episodes of circulatory arrest on cerebral function: Reassuring electroencephalographic (EEG) findings during defibrillation threshold testing at defibrillator implantation. Electroencephalogr Clin Neurophysiol. 1996;98:236-242.

Dworschak M, Franz M, Czerny M. Release of neuron-specific enolase and S100 after implantation of cardiovertors/defibrillators. Crit Care Med. 2003;31:2085-2089.

McNeill E, Gagnon RE, Potts JE. Cerebral oxygenation during defibrillator threshold testing of implantable cardiovertor-defibrillators. Pacing Clin Electrophysiol. 2005;28:528-533.

Dodds C, Allison J. Postoperative cognitive deficit in the elderly surgical patient. Br J Anaesth. 1998;81:449-462.

Moller JT, Cluitmans P, Rasmussen LS. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. Lancet. 1998;351:857-861.

Abildstrom H, Rasmussen LS, Rentowl P. Cognitive dysfunction 1-2 years after non-cardiac surgery in the elderly. Acta Anaesthesiol Scand. 2000;44:1246-1255.

Folstein MF, Folstein SE, McHugh PR. "Mini-mental state": A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189-198.

Bertolucci PH, Brucki SM, Campacci SR. The Mini-Mental State Examination in a general population: impact of educational status. Arq Neuropsiquiatr. 1994;52:1-7.

Inouye SK, van Dyck CH, Alessi CA. Clarifying confusion: the confusion assessment method. A new method for detection of delirium. Ann Intern Med. 1990;113:941-948.

Fabbri RM, Moreira MA, Garrido R. Validity and reliability of the Portuguese version of the Confusion Assessment Method (CAM) for the detection of delirium in the elderly. Arq Neuropsiquiatr. 2001;59:175-179.

Savageau JA, Stanton BA, Jenkins CD. Neuropsychological dysfunction following elective cardiac operation: I. Early assessment. J Thorac Cardiovasc Surg. 1982;84:585-594.

Sotaniemi KA, Mononen H, Hokkanen TE. Long-term cerebral outcome after open-heart surgery: A five-year neuropsychological follow-up study. Stroke. 1986;17:410-416.

Shaw PJ, Bates D, Cartlidge NE, et al. An analysis of factors predisposing to neurological injury in patients undergoing coronary bypass operations. QJ Med. 1989;72:633-646.

Euser SM, Schram MT, Hofman A. Measuring cognitive function with age: the influence of selection by health and survival. Epidemiology. 2008;19:440-447.

Murkin JM, Baird DL, Martzke JS. Cognitive dysfunction after ventricular fibrillation during implantable cardiovertor/defibrillator procedures is related to duration of the reperfusion interval. Anesth Analg. 1997;84:1186-1192.

Adams DC, Heyer EJ, Emerson RG. Implantable cardiovertor-defibrillator: Evaluation of clinical neurologic outcome and electroencephalographic changes during implantation. J Thorac Cardiovasc Surg. 1995;109:565-573.

Weigl M, Moritz A, Steinlechner B. Neuronal injury after repeated brief cardiac arrests during internal cardiovertor-defibrillator implantation is associated with deterioration of cognitive function. Anesth Analg. 2006;103:403-409.

de Vos R, Koster RW, De Haan RJ. In-hospital cardiopulmonary resuscitation: prearrest morbidity and outcome. Arch Intern Med. 1999;159:845-850.

O'Reilly SM, Grubb NR, O'Carroll RE. In-hospital cardiac arrest leads to chronic memory impairment. Resuscitation. 2003;58:73-79.

Varon J, Acosta P. Therapeutic hypothermia: past, present, and future. Chest. 2008;133:1267-1274.

Li J, Liu W, Ding S. Hyperbaric oxygen preconditioning induces tolerance against brain ischemia-reperfusion injury by upregulation of antioxidant enzymes in rats. Brain Res. 2008;1210:223-229.

Zhao P, Peng L, Li L. Isoflurane preconditioning improves long-term neurologic outcome after hypoxic-ischemic brain injury in neonatal rats. Anesthesiology. 2007;107:963-970.

5dd6939b0e8825ae7713f286 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections