Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1590/S0034-70942008000500009
Brazilian Journal of Anesthesiology
Review Article

Proteção miocárdica pelo pré- e pós-condicionamento anestésico

Myocardial protection by pre- and post-anesthetic conditioning

Rubens Campana Pasqualin; José Otávio Costa Auler Jr.

Downloads: 2
Views: 1107

Resumo

JUSTIFICATIVA E OBJETIVO: A isquemia miocárdica perioperatória é um evento comumente observado no período perioperatório podendo aumentar significativamente a morbimortalidade pós-cirúrgica. As propriedades cardioprotetoras dos anestésicos voláteis e dos opióides têm sido estudadas durante algumas décadas e hoje constituem poderosas ferramentas no manuseio de pacientes com doença coronariana isquêmica. O objetivo desta revisão foi fornecer fundamentos da proteção miocárdica por precondicionamento. CONTEÚDO: Serão discutidos os conceitos sobre lesão celular decorrente de isquemia e reperfusão, precondicionamento isquêmico (PCI), precondicionamento anestésico (PCA), assim como os mecanismos de proteção miocárdica. Estudos recentes em cirurgia cardíaca demonstram que a aplicação de curtos períodos de isquemia, durante a reperfusão, podem reduzir a área de infarto do miocárdio. Os anestésicos voláteis também podem apresentar efeito protetor na reperfusão miocárdica. Independentemente da via de sinalização que leva ao precondicionamento, tanto aqueles que envolvem anestésicos quanto o isquêmico, considera-se que os canais de KATP dependentes mitocondriais sejam os mediadores finais de cardioproteção por controlarem o influxo de cálcio na mitocôndria e prevenirem a indução da necrose e apoptose. Apesar do PCI e PCA efetivamente reduzirem a área de infarto do miocárdio e melhorarem a função ventricular pós-operatória, é importante salientar que esses tratamentos devem ser anteriores ao evento isquêmics no sentido de justificar sua aplicabilidade clínica. CONCLUSÕES: Os fenômenos conhecidos como precondicionamento isquêmico e precondicionamento anestésico do miocárdi, são bem conhecidos, sendo o mecanismo de proteção similar em ambas as situações, porém nem todos os passos que levam a esta proteção foram completamente esclarecidos. Mais investigações são necessária, para que as propriedades cardioprotetoras dos agentes anestésicos possam ter aplicabilidade clínica crescente.

Palavras-chave

ANESTÉSICOS, ANESTÉSICOS, COMPLICAÇÕES, FISIOPATOLOGIA, Cardiovascular

Abstract

BACKGROUND AND OBJECTIVES: Perioperative myocardial ischemia is commonly observed, and it can increase significantly postoperative morbidity and mortality. The cardioprotective properties of volatile anesthetics and opioids have been studied during several decades and currently constitute powerful tools in the management of patients with ischemic coronariopathy. The objective of this review was to provide the fundaments of myocardial protection by preconditioning. CONTENTS: The concepts of cellular damage secondary to ischemia and reperfusion, ischemic preconditioning (IPC), and anesthetic preconditioning (APC), as well as the mechanisms of myocardial protection, are discussed. Recent studies in cardiac surgery demonstrated that the use of short periods of ischemia during reperfusion can reduce the area of myocardial infarction. Volatile anesthetic can also have a protective effect in myocardial reperfusion. Independently of the signaling pathway that leads to preconditioning, both anesthetic and ischemic, mitochondrial dependent KATP channels are considered the final mediators of cardioprotection by controlling the mitochondrial influx of calcium and, therefore, preventing the induction of necrosis and apoptosis. Although IPC and APC effectively reduce the area of myocardial infarction and improve postoperative ventricular function, it is important to stress that those treatments should be instituted before ischemic events to justify their clinical applicability. CONCLUSIONS: Phenomena known as myocardial ischemic preconditioning and anesthetic preconditioning are well known, and the mechanism of protection is similar in both situations; however, not every step that leads to this protection has been fully explained. Further studies are necessary to increase the clinical applicability of the cardioprotective properties of anesthetics.

Keywords

ANESTHETICS, ANESTHETICS, COMPLICATIONS, PATHOPHYSIOLOGY, Cardiovascular, PATHOPHYSIOLOGY, Cardiovascular

References

Mangano DT. Per operative cardiac morbidity. Anesthesiology. 1990;72:153-184.

Bolli R. Mechanism of myocardial "stunning". Circulation. 1990;82:723-738.

Bernier M, Manning AS, Hearse DJ. Reperfusion arrhythmias: dose-related protection by anti-free radical intervention. Am J Physiol. 1989;256:h1344-h1352.

DJ Manning AS, Downey JM, Yellon DM. Xantine oxidase: a critical mediator of myocardial injury during ischemia and reperfusion?. Acta Physiol Scand. 1986;548:65-74.

Warltier DC, Pagel PS, Kersten JR. Approaches to the prevention of per operative myocardial ischemia. Anesthesiology. 2000;92:253-259.

Freedman BM, Hamm DP, Everson CT. Enflurane enhances post ischemic functional recovery in the isolated rat hearts. Anesthesiology. 1985;62:29-33.

Schultz JEJ, Rose E, Yao Z. Evidence for involvement of opioid receptors in ischemic preconditioning in rat hearts. Am J Physiol. 1995;268:H2157-2161.

Schultz JEJ, Hsu AK, Gross GJ. Morphine mimics the cardio protection effect of ischemic preconditioning via glibenclamide-sensitive mechanism in the rat heart. Circ Res. 1996;78:1100-1104.

Jennings RD, Reimer KA. The cell biology of acute myocardial ischemia. Annu Rev Med. 1991;42:225-246.

Sommerschild HT, Kirkeboen KA. Preconditioning: endogenous defense mechanism of the heart. Acta Anesthesiol Scand. 2002;46:123-137.

Du Toit EF, Opie LH. Modulation of severity of reperfusion stunning in the isolated rat heart by agents altering calcium flux at onset of reperfusion. Circ Res. 1992;70:960-967.

Kusuoka H, Camilion de Hurtado MC. Role of sodium/calcium exchange in the mechanism of myocardial stunning: protective effect of reperfusion with high sodium solution. J Am Coll Cardiol. 1993;21:240-248.

Du XJ, Anderson KE, Jacobsen A. Suppression of ventricular arrhythmias during ischemia-reperfusion by agents inhibiting Ins(1,4,5)P3 release. Circulation. 1995;91:2712-2716.

McCormack JG. Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive enzymes from rat liver and within intact rat liver mitochondria. Biochem J. 1985;231:581-595.

Zaugg M, Schaub MC. Signaling and cellular mechanisms in cardiac protection by ischemic and pharmacological preconditioning. J Mus Res Cell Mot. 2003;24:219-249.

De Hert SG, Turani F, Mathur S. Cardiac protection with volatile anesthetics and clinical implications. Anesth Analg. 2005;100:1584-1593.

Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124-1136.

Okubo S, Xi L, Bernardo NL. Myocardial preconditioning: basic concepts and potential mechanisms. Mol Cell Biochem. 1999;196:3-12.

Nakano A, Cohen MV, Downey JM. Ischemic preconditioning: From basic mechanisms to clinical applications. Pharmacol Ther. 2000;86:263-275.

Rubino A, Yellon DM. Ischemic preconditioning of vasculature: an overlooked phenomenon for protecting the heart?. Trends Pharmacol Sci. 2000;21:225-230.

Zaugg M, Lucchinetti E, Ueckler M. Anaesthetics and cardiac preconditioning. Part I: Signaling and cytoprotective mechanisms. Br J Anaesth. 2003;91:551-565.

Bolli R. The late phase of preconditioning. Circ Res. 2000;87:972-983.

Zaugg M, Lucchinetti E, Garcia C. Anaesthetics and cardiac preconditioning: Part II. Clinical implications. Br J Anaesth. 2003;91:566-576.

De Klaver MJ, Manning L, Palmer LA. Isoflurane inhibits cytokine-induced cell death in cultured rat smooth muscle cells and human endothelial cells. Anesthesiology. 2002;97:24-32.

Julier K, da Silva R, Garcia C. Preconditioning by sevoflurane decreases biochemical markers for myocardial and renal dysfunction in coronary artery bypass graft surgery: a double-blinded placebo-controlled multicenter study. Anesthesiology. 2003;98:1315-1327.

Roscoe AK, Christensen JD, Lynch C. Isoflurane, but not halothane, induces protection of human myocardium via adenosine A1 receptor and adenosine triphosphate-sensitive potassium channels. Anesthesiology. 2000;92:1692-1701.

Hanouz JL, Yvon A, Masseti M. Mechanisms of desflurane-induced preconditioning in isolated human right atria in vitro. Anesthesiology. 2002;97:33-41.

Toller WG, Kersten JR, Pagel PS. Sevoflurane reduces myocardial infarct size and decreases the time threshold for ischemic preconditioning in dogs. Anesthesiology. 1999;91:1437-1446.

Uecker M, da Silva R, Grampp T. Translocation of protein kinase-C isoforms to sub cellular targets in ischemic and anesthetic preconditioning. Anesthesiology. 2003;99:138-147.

da Silva, Grampp T, Pasch T. Differential activation of mitogen activated protein kinases in ischemic and anesthetic preconditioning. Anesthesiology. 2004;100:59-69.

Tanaka K, Weihrauch D, Ludwig LM. Mitochondrial adenosine triphosphate-regulated potassium channel opening acts as a trigger for isoflurane-induced preconditioning by generating reactive oxygen species. Anesthesiology. 2003;98:935-943.

Noma A. ATP-regulated K+ channels in cardiac muscle. Nature. 1983;305:147-148.

Nichols CG, Lederer WJ. The regulation of ATP-sensitive K+ channel activity in intact and permeabilized rat ventricular myocytes. J Physiol. 1990;423:91-110.

Inoue I, Nagase H, Kishi K. ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature. 1991;352:244-247.

Yao Z, Gross GJ. Effects of the KATP channel opener bimakalim on coronary blood flow, monophasic action potential duration, and infarct size in dogs. Circulation. 1994;89:1769-1775.

Munch-Ellingsen J, Lokebo JE, Bugge E. 5-HD abolishes ischemic preconditioning independently of monophasic action potential duration in the heart. Basic Res Cardiol. 2000;95:228-234.

Hamada K, Yamazaki J, Nagao T. Shortning of action potential duration is not prerequisite for cardiac protection by ischemic preconditioning or a KATP channel opener. J Mol Cell Cardiol. 1998;30:1369-1379.

Inagaki N, Gonoi T, Clement JP IV. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science. 1995;270:1166-1170.

Suzuki M, Sasaki N, Miki T. Role of sarcolemal K(ATP) channels in cardio protection against ischemia/reperfusion injury in mice. J Clin Invest. 2002;109:509-516.

dos Santos R, Kowaltowski AJ, Laclau MN. Mechanisms by wich opening the mitochondrial ATP-sensitive K+ channel protect the ischemic heart. Am J Physiol Heart Circ Physiol. 2002;283:H284-295.

Dzeja PP, Holmuhamedov EL, Ozcan C. Mitochondria: gateway for cytoprotection. Circ Res. 2001;89:744-746.

Holmuhamedov EL, Wang L, Terzic A. ATP-sensitive K+ channel opener prevent Ca++ overload in rat cardiac mitochondria. J Physiol. 1999;519:347-360.

Holmuhamedov EL, Jovanovic S, Dzeja PP. Mitochodrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Physiol Heart Circ Physiol. 1998;275:H1567-1576.

Minners J, Lacerda L, McCarthy J. Ischemic and pharmacological preconditioning in Girard cells and C2C12 myotubes induce mitochondrial uncoupling. Circ Res. 2001;89:787-792.

Halestrap AP. The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism. Biochim Biophys Acta. 1989;973:355-382.

Garlid KD. Cation transport in mitochondria: the potassium cycle. Biochim Biophys Acta. 1996;1275:123-126.

Garlid KD. On the mechanism of the regulation of the mitochondrial K+/H+ exchanger. J Biol Chem. 1980;255:11273-11279.

Green DR, Reed JC. Mitochondrial and apoptosis. Science. 1998;281:1309-1312.

Akao M, Ohler A, O'Rourke B. Mitochondrial ATP-sensitive K+channels inhibit apoptosis induced by oxidative stress in cardiac cells. Circ Res. 2001;88:1267-1275.

Ozcan C, Bienengraeber M, Dzeja PP. Potassium channel opener protect cardiac mitochondria by attenuating oxidant stress at reoxygenation. Am J Physiol Heart Circ Physiol. 2002;282:H531-539.

Fryer RM, Eells JT, Hsu AK. Ischemic preconditioning in rats: role of the mitochondrial K(ATP) channel in preservation of the mitochondrial function. Am J Physiol Heart Cir Physiol. 2000;278:H305-312.

Tanonaka K, Taguchi T, Koshimizu M. Role of an ATP-sensitive potassium channel opener, YM934, in mitochondrial energy production in ischemic/reperfused heart. J Pharmacol Exp Ther. 1999;291:710-716.

Novalija E, Kevin LG, Eells JT. Anesthetic preconditioning improves adenosina triphosphate synthesis and reduces reactive oxygen species formation in mitochondria after ischemia by a redox dependent mechanism. Anesthesiology. 2003;98:1155-1163.

Riess ML, Novalija E, Camara AK. Preconditioning with sevoflurane reduces nicotinamide adenine dinucleotide during ischemia/reperfusion in isolated hearts: Reversal by 5-hydroxydecanoic acid. Anesthesiology. 2003;98:378-395.

Zorov DB, Filburn CR, Klotz LO. Reactive oxygen species (ROS)-induced ROS release: A new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med. 2000;192:1001-1014.

Kroemer G, Reed JC. Mitochondrial control of the cell death. Nat Med. 2000;6:513-9.

Kowaltowski AJ, Castilho RF, Vercesi AE. Mitochondrial permeability transition and oxidative stress. FEBS Lett. 2001;495:12-15.

Hausenloy DJ, Maddock HL, Baxter GF. Inhibiting mitochondrial permeability transition pore: A new paradigm for myocardial preconditioning?. Cardiovasc Res. 2002;55:534-543.

Piriou V, Chiari P, Roesch OG. Effect of desflurane-induced preconditioning on mitochondrial transition pore opening. Anesthesiology. 2003;99:A1538.

Allard MF, Flint JD, English JC. Calcium overload during reperfusion is accelerated in isolated hypertrophied rat hearts. J Mol Cell Cardiol. 1994;26:1551-1563.

Miyamae M, Camacho SA, Weimer MW. Attenuation of post ischemic reperfusion injury is related to prevention of [Ca++] overload in rat hearts. Am J Physiol Heart Circ Physiol. 1996;271:H2145-2153.

Di Lisa F, Bernardi P. Mitochondrial function as a determinant of recovery or death in cell response to injury. Mol Cell Biochem. 1998;184:379-391.

An J, Varadarajan SG, Novalija E. Ischemic and anesthetic preconditioning reduces cytosolic [Ca++] and improves Ca++ responses in intact hearts. Am J Physiol Heart Circ Physiol. 2001;281:H1508-1523.

Varadarajan SG, An J, Novalija E. Sevoflurane before or after ischemia improves contractile and metabolic function while reducing myoplasmatic Ca++ loading in intact hearts. Anesthesiology. 2002;96:125-133.

Wang L, Cherednichenko G, Hernandez L. Preconditioning limits mitochondrial Ca++ during ischemia in rat hearts: Role of K(ATP) channels. Am J Physiol Heart Circ Physiol. 2001;280:H2321-2328.

Riess ML, Camara AK, Novalija E. Anesthetic preconditioning attenuates mitochondrial Ca++ overload during ischemia in guinea pigs intact hearts: Reversal by 5-hydroxydecanoic acid. Anesth Analg. 2002;95:1540-1546.

Siegmund B, Schlack W, Ladilov YV. Halothane protects cardiomyocites against reoxygenation-induced hyper contracture. Circulation. 1997;96:4372-4379.

Davies LA, Gibson CN, Boyett MR. Effects of isoflurane, sevoflurane and halothane on myofilament Ca++ release in rat ventricular myocites. Anesthesiology. 2000;93:1034-1044.

Zucchi R, Ronca F, Ronca Testoni S. Modulation of sarcoplasmic reticulum function: A new strategy in cardio protection?. Pharmacol Ther. 2001;89:47-65.

Piper HM, Meuter K, Schaefer C. Cellular mechanisms of ischemia-reperfusion injury. Ann Thorac Surg. 2003;75:S644-648.

Mullenhein J, Ebel D, Frassdorf J. Isoflurane preconditions myocardium against infarction via release of free radicals. Anesthesiology. 2002;96:934-940.

Tanaka K, Weihrauch D, Khel F. Mechanism of preconditioning by isoflurane in rabbits: a direct role for reactive oxygen species. Anesthesiology. 2002;97:1485-1490.

Kevin LG, Novalija E, Riess ML. Sevoflurane exposure generates superoxide but leads to decreased superoxide during ischemia and reperfusion in isolated hearts. Anesth Analg. 2003;96:949-955.

Hall GM, Kirtland SJ, Baum H. The inhibition of mitochondrial respiration by inhalational anaesthetic agents. Br J Anaesth. 1973;45:1005-1009.

Hanley PJ, Ray J, Brandt U. Halothane, isoflurane and sevoflurane inhibits NADH-ubiquinone oxidoredutase (complex I) of cardiac mitochondria. J Physiol. 2002;544:687-693.

Riess ML, Camara AK, Chen Q. Altered NADH and improved function by anesthetic and ischemic preconditioning in guinea pig intact hearts. Am J Physiol Heart Circ Physiol. 2002;283:H53-H60.

Riess ML, Eells JT, Kevin LG. Attenuation of mitochondrial respiration by sevoflurane in isolated cardiac mitochondria is mediated in part by reactive oxygen species. Anesthesiology. 2004;100:498-505.

Ludwig LM, Tanaka K, Eells JT. Preconditioning by isoflurane is mediated by reactive oxygen species generated from mitochondrial eletron transport chain complex III. Anesth Analg. 2004;99:1308-1315.

Piriou V, Chiari P, Gateau-Roesch O. Desflurane-induced preconditioning alters calcium-induced mitochondrial permeability transition. Anesthesiology. 2004;100:581-588.

Vanden Hoeck TL, Shao Z, Li C. Reperfusion injury on cardiac myocytes after simulated ischemia. Am J Physiol. 1996;270:H1334-H1341.

Piper HM, Abdallah Y, Schaefer C. The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res. 2004;61:365-371.

Zhao ZQ, Corvera JS, Halkos ME. Inhibition of myocardial injury by ischemic post conditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003;285:H579-H588.

Kin H, Zhao ZQ, Sun HY. Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res. 2004;62:74-85.

Tsang A, Hausenloy DJ, Mocanu MM. Postconditioning: a form of "modified reperfusion" protects the myocardium by activating the phosphatidilinositol 3-kinase-Akt pathway. Circ Res. 2004;95:230-232.

Stadnicka A, Bosnjak ZJ. Isoflurane decreases ATP sensitivity of guinea pig cardiac sarcolemal KATP channel at reduced intracellular pH. Anesthesiology. 2003;98:396-403.

Schlack W, Preckel B, Stunneck D. Effects of halothane, enflurane, isoflurane, sevoflurane and desflurane on myocardial reperfusion injury in the isolated rat heart. Br J Anaesth. 1998;81:913-919.

Preckel B, Schlack W, Comfere T. Effecs of enflurane, isoflurane, sevoflurane and desflurane on reperfusion injury after regional ischemia in the rabbit heart in vivo. Br J Anaesth. 1998;81:905-912.

Obal D, Preckel B, Scharbatke H. One MAC of sevoflurane provides protection against reperfusion injury in the rat heart in vivo. Br J Anaesth. 2001;87:905-911.

Chiari PC, Bienengraeber M, Pagel OS. Isoflurane protects against myocardial infarction during early reperfusion by activation of phosphatidylinositol-3-kinase signal transduction: evidence for anesthetic-induced postconditioning in rabbits. Anesthesiology. 2005;102:102-109.

Sack MN, Yellon DM. Insulin therapy as an adjunct to reperfusion after acute coronary ischemia: a proposed direct myocardial cell survival effect independent of metabolic modulation. J Am Coll Cardiol. 2003;41:1404-1407.

Yang XM, Krieg T, Cui L. NECA and bradykinin at reperfusion reduce infarction in rabbit hearts by signaling through PI3K, ERK, and NO. J Mol Cell Cardiol. 2004;36:411-421.

Gross ER, Hsu AK, Gross GJ. Opioid-induced cardioprotection occurs via glycogen synthase inase beta inhibition during reperfusion in intact hearts. Circ Res. 2004;94:960-966.

Heindl B, Reichle FM, Zahler S. Sevoflurane and isoflurane protect the reperfused guinea pig heart by reducing post ischemic adhesion of polymorphonuclear neutrophils. Anesthesiology. 1999;91:521-530.

Vinten-Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res. 2004;61:481-497.

5dd6a43f0e8825513213f287 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections