Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1590/S0034-70942008000200011
Brazilian Journal of Anesthesiology
Miscellaneous

Anestesia venosa total em regime de infusão alvo-controlada: uma análise evolutiva

Total intravenous anesthesia as a target-controlled infusion: an evolutive analysis

Fernando Squeff Nora

Downloads: 2
Views: 1178

Resumo

JUSTIFICATIVA E OBJETIVOS: A anestesia venosa total (AVT) sofreu diversos avanços desde o início da utilização da técnica. Desde a síntese dos primeiros anestésicos venosos, com a introdução dos barbitúricos (1921) e do tiopental (1934), a AVT evoluiu até o desenvolvimento da AVT com auxílio de bombas com infusão alvo-controlada (IAC). O primeiro modelo farmacocinético para uso em IAC foi descrito por Schwilden em 1981. Foi demonstrado, a partir daí, que era possível manter a concentração plasmática desejada de um fármaco utilizando-se bomba de infusão gerenciada por computador. CONTEÚDO: Este artigo visou a descrever as bases teóricas da IAC, a apresentar uma proposta de desenvolvimento de um vocabulário comum em IAC ainda não publicado no Brasil e a fazer uma análise crítica dos aspectos atuais da IAC no mundo e no Brasil. CONCLUSÕES: A chegada de novas bombas de infusão dotadas dos modelos farmacocinéticos do remifentanil, sufentanil e propofol inaugura outro capítulo da AVT e alinha o Brasil com a tendência mundial em IAC. Esses sistemas possibilitarão a IAC de hipnóticos e opióides concomitantemente. A conclusão mais importante, no entanto, refere-se à economia à medida que os fármacos utilizados nessas bombas não ficarão restritos apenas a uma empresa farmacêutica, a exemplo do que ocorreu com o propofol. Hoje já se dispõe de equipamentos para utilização de propofol e opióides, em IAC, que aceitam qualquer apresentação farmacêutica com a vantagem da possibilidade de alteração da concentração do fármaco na seringa, de acordo com a diluição desejada.

Palavras-chave

ANESTESIA, Geral

Abstract

BACKGROUND AND DOBJECTIVES: Total intravenous anesthesia (TIVA) has seen several developments since it was first used. Since the synthesis of the first intravenous anesthetics, with the introduction of barbiturates (1921) and thiopental (1934), TIVA has evolved until the development of TIVA with target-controlled infusion pumps (TCI). The first pharmacokinetic model for the use of TCI was described by Schwilden in 1981. From that moment on, it was demonstrated that it is possible to maintain the desired plasma concentration of a drug using an infusion pump managed by a computer. CONTENTS: The objective of this report was to describe the theoretical bases of TCI, propose the development of a common TCI vocabulary, which has not been done in Brazil and make a critical analysis of the current aspects of TCI in the world and in Brazil. CONCLUSIONS: The advent of new infusion pumps with pharmacokinetic models of remifentanil, sufentanil and propofol opens a new chapter in TIVA and aligns Brazil with the world tendency in TCI. Those systems will allow TCI of hypnotics and opioids concomitantly. However, the most important conclusion refers to the economy, since drugs used in those pumps will not be restricted to only one drug company, similar to what happened with propofol. Nowadays, TCI devices for the use of propofol and opioids, which accept any pharmaceutical presentation, with the advantage of changing the concentration of the drug in the syringe according to the dilution desired are available.

Keywords

ANESTHESIA, General

References

Vandam LD. History of Anesthetic Practice. Anesthesia. :1-11.

Wood A. A new method of treating neuralgia by the direct application of opiates to the painful points. Edinburgh Med Surg J. 1855;82:265-281.

Vandam LD. History of Anesthetic Practice. Anesthesia. 2000:1-11.

Jan Van Hemelrijck. Kissin I: History of Intravenous Anesthesia. Textbook of Intravenous Anesthesia. 1997:1-9.

White PF. Propofol: pharmacokinetics and pharmacodynamics. Semin Anesth. 1988;7:4-20.

Sebel PS, Lowdon JD. Propofol: a new intravenous anesthetic. Anesthesiology. 1989;71:260-277.

Smith I, White PF, Nathanson M. Propofol: an update on its clinical uses. Anesthesiology. 1994;81:1005-1043.

Brodie BB, Mark L, Papper EM. The fate oh thiopental in man and a method for its estimation in biological material. J Pharmacol Exp Ther. 1950;98:85-96.

Price HL, Kovnat PJ, Safer JN. The uptake of thiopental by body tissues and its relations to duration of narcosis. Clin Pharmacol Ther. 1960;1:16-22.

Bischoff KB, Dedrick RL. Thiopental pharmacokinetics. J Pharmacol Sci. 1968;57:1346-1351.

Yamaoka K, Nakagawa T, Uno T. Statistical moments in pharmacokinetics. J Pharmacokinet Biopharm. 1978;6:547-558.

Hull CJ, vanBeem HBH, McLeon K. A pharmacodynamic model for pancuronium. Br J Anaesth. 1978;50:1113-1123.

Boyes RN, Scott DB, Jebson PJ. Pharmacokinetics of lidocaine in man. Clin Pharmacol Ther. 1971;12:105-115.

Wagner JG. A safe method for rapidly achieving plasma concentration plateaus. Clin Pharmacol Ther. 1974;16:691-700.

Wagner JG. Linear pharmacokinetic equations allowing direct calculation of many needed pharmacokinetic parameters from the coefficients and exponents of polyexponential equations which have been fitted to the data. J Pharmakinet Biopharm. 1976;4:443-467.

Kruger-Thiemer E. Continuous intravenous infusion and multicompartiment accumulation. Eur J Pharmacol. 1968;4:317-334.

Vaughan DP, Tucker GT. General theory for rapid establishing steady-state drug concentrations using two consecutive constant rate intravenous infusion. Eur J Clin Pharmacol. 1975;9:235-238.

Rigg JRA, Wong TY. A method for achieving rapidly steady-state blood concentrations for i.v. drugs. Br J Anaesth. 1981;53:1247-1257.

Schwilden H, Stoeckel H, Schuttler J. Pharmacological models and their use in clinical anaesthesia. Eur J Anesthesiol. 1986;3:175-208.

Ausems ME, Hug CC Jr. Plasma concentrations of alfentanil required to supplement nitrous oxide anaesthesia for lower abdominal surgery. Br J Anaesth. 1983;55:191s-197s.

Ausems ME, Hug CC Jr, Stanski DR. Plasma concentrations of alfentanil required supplementing nitrous oxide anesthesia for general surgery. Anesthesiology. 1986;65:362-73.

White PF, Dworsky WA, Horai Y. Comparison of continuous infusion fentanil or ketamine versus thiopental: determining the mean effective serum concentrations for outpatient surgery. Anesthesiology. 1983;59:564-569.

White PF. Continuous infusion of thiopental, methohexital or etomidate as adjuvants to nitrous oxide for outpatient anesthesia. Anesth Analg. 1984;63:282-287.

Doze VA, Westphal LM, White PF. Comparison of propofol with methohexital for outpatient anesthesia. Anesth Analg. 1986;65:1189-1195.

Shafer A, Doze VA, White PF. Pharmacokinetics and pharmacodynamics of propofol infusions during general anesthesia. Anesthesiology. 1988;69:348-356.

Sear JR, Shaw I, Wolf A. Infusion of propofol to supplement nitrous oxide for maintenance of anesthesia. Anaesthesia. 1988;43:18-22.

Schwilden H. A general method for calculation the dosage scheme in linear pharmacokinetics. Eur J Clin Pharmacol. 1981;20:379.

Shafer SL, Varvel JR. Pharmacokinetics, pharmacodynamics, and rational opioid selection. Anesthesiology. 1991;74:53-63.

Hugues MA, Glass PSA, Jacobs JR. Context-sensitive half-time in multicompartimental pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology. 1992;76:334-341.

Ausems ME, Vuyk J, Hug CC Jr. Comparison of computer-assisted infusion versus intermittent bolus administration of alfentanil as a supplement to nitrous oxide for lower abdominal surgery. Anesthesiology. 1988;68:851-61.

Smith C, McEwan AI, Jhaveri R. The interaction of fentanyl on the Cp50 of propofol for loss of consciousness and skin incision. Anesthesiology. 1994;81:820-828.

Coetzee JF, Glen JB, Wuim CA. Pharmacokinetic model selection for target-controlled infusions of propofol. Anesthesiology. 1995;82:1328-1345.

Shafer SL, Gregg K. Algorithms to rapidly achieve and maintain stable drug concentrations at the site of drug effect with a computer controlled infusion pump. J Pharmacokinetic Biopharm. 1992;20:147-169.

Vuyk J, Lim T, Engbers FHM. The pharmacodynamic interaction of propofol and alfentanil during lower abdominal surgery in female patients. Anesthesiology. 1995;83:8-22.

McClain DA, Hug CC Jr. Intravenous fentanyl kinetics. Clin Pharmacol Ther. 1980;28:106-114.

Jacobs JR, Glass PSA, Reves JG. Opioid Administration by Continuous Infusion. Opioids in Anesthesia. 1990:241-253.

Glass PSA, Shafer SL, Jacobs JR. Intravenous Drug Delivery Systems in Anesthesia. Anesthesia. 1994:389-416.

Shafer SL, Schiwinn DA. Basic Principles of Pharmacology Related to Anesthesia. Miller s Anesthesia. 2005:67-104.

Shafer SL, Youngs EJ. Basic of Pharmacokinetics and Pharmacodynamics Principles. Textbook of Intravenous Anesthesia. 1997:10.

Billard V, Joacqmin S. Comment conduire L analgésie peorpératoire. Cah Anesthesiol. 2001;49:103-111.

Vuyk J, Engbers FHM, Burn AG. Pharmacodynamic interaction between propofol and alfentanil given for induction of anesthesia. Anesthesiology. 1996;4:288-99.

Vuyk J, Mertens MJ, Oolofsen E. Proposal anesthesia and rational opioid selection: determination of optimal EC50-EC95 propofol-opioid concentrations that assure adequate anesthesia and a rapid return of consciousness. Anesthesiology. 1997;87:1549-62.

Hoymork SC, Reader J, Grimsmo B. Bispectral index, predicted and measured drug levels of target controlled infusions of remifentanil and propofol during laparoscopic cholecystectomy and emergence. Acta Anaesthesiol Scand. 2000;44:1138-1144.

Drover DR, Lemmens HJ. Population pharmacodynamics and pharmacokinetics of remifentanil as a supplement to nitrous oxide anesthesia for elective abdominal surgery. Anesthesiology. 1998;89:869-877.

Macquaire V, Cantraine F, Schmartz D. Target-controlled infusion of propofol induction with or without plasma concentration constraint in high-risk adult patients undergoing cardiac surgery. Acta Anaesthesiol Scand. 2002;46:1010-1016.

White M, Schenkels MJ, Engbers FH. Effect-site modeling of propofol using auditory evoked potentials. Br J Anaesth. 1999;82:333-339.

Struys MM, D Smet T, Depoorter B. Comparison of plasma compartment versus two methods for effect compartment-controlled infusion for propofol. Anesthesiology. 2000;92:399-406.

Servin F, Cazalaá JB, Levron JC. Propofol, sufentanil, remifentanil in TCI: Bibliographical study of anesthetic agents used in the Base Primea. 2003.

Glass PSA, Shafer SL, Reves JG. Intravenous drug delivery systems. Miller s Anesthesia. 2005:439-480.

Schnider TW, Minto CF, Gambus . The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology. 1998;88:1170-1182.

Cockshott ID. Propofol (Diprivan) pharmacokinetics and metabolism: an overview. Postgrad Med J. 1995;61(^s3):45-50.

Gepts E, Camu F, Cockshott ID. Disposition of propofol administered as constant rate intravenous infusions in humans. Anesth Analg. 1987;66:1256-1263.

Gepts E, Jonckheer K, Maes V. Disposition kinetics of propofol during alfentanil anaesthesia. Anaesthesia. 1988;43:8-13.

Marsh B, White M, Morton N. Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth. 1991;67:41-48.

Kirkpatrick T, Cockshott ID, Douglas EJ. Pharmacokinetics of propofol in elderly patients. Br J Anaesth. 1988;60:146-150.

Tackley RM, Lewis GT, Prys-Roberts C. Computer controlled infusion of propofol. Br J Anesth. 1989;62:46-53.

Dyck JB, Shafer SL. Effects of age on propofol pharmacokinetic. Sem Anesth. 1992;11:2-4.

Smith C, McEwan AI, Jhaveri R. The interaction of fentanil on the Cp50 of propofol for loss of consciousness and skin incision. Anesthesiology. 1994;81:820-828.

Slepchenko G, Simon N, Goubaux B. Performance of target-controlled sufentanil infusion in obese patients. Anesthesiology. 2003;98:65-73.

Pandin PC, Contraine F, Ewalenko P. Predictive accuracy of target-controlled propofol and sufentanil coinfusion in long-lasting surgery. Anesthesiology. 2000;93:653-661.

Bailey JM, Schweieger IM, Hug CC Jr. Evaluation of sufentanil anesthesia obtained by a computer-controlled infusion for cardiac surgery. Anesth Analg. 1993;76:247-252.

Schraag S, Mohl U, Bothner U. Interaction modeling of propofol and sufentanil on loss of consciousness. J Clin Anesth. 1999;11:391-396.

Barvais L, Heitz D, Schmartz D. Pharmacokinetic model driven infusion of sufentanil and midazolam during cardiac surgery: assessment of the prospective predictive accuracy and the quality of anesthesia. J Cardiothorac Vasc Anesth. 2000;14:402-408.

Hudson RJ, Henderson BT, Thomson IR. Pharmacokinetics of sufentanil patients undergoing coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2001;15:693-699.

Greely WJ, de Bruijin NP, Davis DP. Sufentanil pharmacokinetics in pediatric cardiovascular patients. Anesth Analg. 1987;66:1067-1072.

Drover DR, Lemmens HJ. Population pharmacodynamics and pharmacokinetics of remifentanil as a supplement to nitrous oxide anesthesia for elective abdominal surgery. Anesthesiology. 1996;84:812-820.

Egan TD, Huizinga B, Guota SK. Remifentanil pharmacokinetics in obese patients versus lean patients. Anesthesiology. 1998;89:562-573.

Dershwitz M, Hoke JF, Rosow CE. Pharmacodynamics and pharmacokinetics of remifentanil in volunteer subjects with severe liver disease. Anesthesiology. 1996;84:812-820.

5dd6ccdc0e8825405813f287 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections