Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1590/S0034-70942005000600007
Brazilian Journal of Anesthesiology
Scientific Article

Estudo comparativo dos efeitos hemodinâmicos e ventilatórios da ventilação controlada a volume ou a pressão, em cães submetidos ao pneumoperitônio

Hemodynamic and ventilatory effects of volume or pressure controlled ventilation in dogs submitted to pneumoperitoneum. Comparative study

Antonio Roberto Carraretto; Pedro Thadeu Galvão Vianna; Armando Vieira de Almeida; Eliana Marisa Ganem

Downloads: 0
Views: 993

Resumo

JUSTIFICATIVA E OBJETIVOS: A ventilação com pressão controlada (PCV) está disponível em aparelhos de anestesia, mas não existem estudos sobre o seu uso, durante o pneumoperitônio com o CO2 (PPC). O objetivo deste estudo foi avaliar a ventilação controlada a pressão bem como as alterações hemodinâmicas e ventilatórias durante o PPC, comparando-a com a ventilação controlada a volume (VCV) convencionalmente utilizada. MÉTODO: Dezesseis cães anestesiados com tiopental sódico, citrato de fentanil e brometo de pancurônio, foram divididos aleatoriamente em dois grupos: VC - ventilação controlada a volume (n = 8) e PC - ventilação controlada a pressão (n = 8) Os parâmetros hemodinâmicos e ventilatórios foram monitorizados e registrados em 4 momentos: M1 (antes do PPC), M2 (30 minutos após PPC = 10 mmHg), M3 (30 minutos após PPC = 15 mmHg) e M4 (30 minutos após a deflação do PPC). RESULTADOS: Com a aplicação do PPC ocorreu um aumento do volume corrente no grupo PC, aumento das pressões inspiratórias (máxima e de platô), diminuição da complacência proporcional ao aumento do PPC, aumento da freqüência cardíaca, manutenção da pressão arterial média com valores maiores no grupo VC em todos os momentos, aumento da pressão de átrio direito com diminuição significativa após a deflação, diminuição do pH sangüíneo durante o PPC com menor variação no grupo PC, maior estabilidade da pressão parcial do CO2 no sangue arterial no grupo PC, sem alterações da pressão parcial do O2 no sangue arterial. CONCLUSÕES: Apesar das diferenças de alguns parâmetros hemodinâmicos e ventilatórios, entre os dois modos de controle da ventilação, nas condições estudadas foi possível a utilização da ventilação controlada a pressão para procedimentos com a aplicação do PPC. É fundamental observar o controle rigoroso da ventilação alveolar, ajustando a pressão inspiratória para manter eliminação adequada do CO2 e garantir oxigenação.

Palavras-chave

ANIMAL, CIRURGIA, Abdominal, VENTILAÇÃO

Abstract

BACKGROUND AND OBJECTIVES: Pressure controlled ventilation (PCV) is available in anesthesia machines, but there are no studies on its use during CO2 pneumoperitoneum (CPP). This study aimed at evaluating pressure-controlled ventilation and hemodynamic and ventilatory changes during CPP, as compared to conventional volume controlled ventilation (VCV). METHODS: This study involved 16 dogs anesthetized with thiopental, fentanyl and pancuronium, which were randomly assigned to two groups: VC - volume controlled ventilation (n=8) and PC - pressure controlled ventilation (n=8). Hemodynamic and ventilatory parameters were monitored and recorded in 4 moments: M1 (before CPP), M2 (30 minutes after CPP = 10 mmHg), M3 (30 minutes after CPP=15 mmHg) and M4 (30 minutes after deflation). RESULTS: With CPP, there has been significant increase in tidal volume in PC group; there has been increase in airway pressures (peak and plateau), decrease in compliance with increase in CPP pressure, increase in heart rate, maintenance of mean blood pressure with higher values in the VC group in all stages; there was also increase in right atrium pressure with significant decrease after deflation, decrease in arterial pH with minor variations in PC group, greater arterial pCO2 stability in PC group, and no significant changes in arterial pO2. CONCLUSIONS: There were some differences in hemodynamic and ventilatory data between both ventilation control modes (VC and PC). It is possible to use pressure controlled ventilation during CPP, but the anesthesiologist must monitor and take a close look at alveolar ventilation, adjusting inspiratory pressure to ensure proper CO2 elimination and oxygenation.

Keywords

ANIMAL, SURGERY, Abdominal, VENTILATION

References

Rasmussen JP, Dauchot PJ, DePalma RG. Cardiac function and hypercarbia. Arch Surg. 1978;113:196-200.

Marshall RL, Jebson PJ, Davie IT. Circulatory effects of peritoneal insufflation with nitrous oxide. Br J Anaesth. 1972;44:1183-1187.

Sterling GM. The mechanism of decreased specific airway conductance in man during hypercapnia caused by inhalation of 7% CO2. Clin Sci. 1969;37:539-548.

Badr MS, Skatrud JB, Simon PM. Effect of hypercapnia on total pulmonary resistance during wakefulness and during NREM sleep. Am Rev Respir Dis. 1991;144:406-414.

Rodarte JR, Hyatt RE. Effect of acute exposure to CO2 on lung mechanics in normal man. Respir Physiol. 1973;17:135-145.

Bardoczky GI, Engelman E, Levarlet M. Ventilatory effects of pneumoperitoneum monitored with continuous spirometry. Anaesthesia. 1993;48:309-311.

Hirvonen EA, Nuutinen LS, Kauko M. Ventilatory effects, blood gas changes and oxygen consumption during laparoscopic hysterectomy. Anesth Analg. 1995;80:961-966.

Makinen MT, Yli-Hankala A. The effect of laparoscopic cholecystectomy on respiratory compliance as determined by continuous spirometry. J Clin Anesth. 1996;8:119-122.

Almeida AV, Ganem EM, Carraretto AR. Alterações hemodinâmicas durante o pneumoperitônio em cães ventilados com volume e pressão controlados. Rev Bras Anestesiol. 2003;53:756-766.

Almeida AV, Ganem EM. Efeitos do pneumoperitônio sobre a hemodinâmica e função renais em cães ventilados com volume e pressão controlados. Rev Bras Anestesiol. 2004;54:343-360.

Merilainen P, Hanninen H, Tuomaala L. A novel sensor for routine continuous spirometry of intubated patients. J Clin Monit. 1993;9:374-380.

Curi PR. Metodologia e Análise da Pesquisa em Ciências Biológicas. 1998:263.

Morrison DF. Multivariate Statistical Methods. 1967.

Fahy BG, Barnas GM, Flowers JL. The effects of increased abdominal pressure on lung and chest wall mechanics during laparoscopic surgery. Anesth Analg. 1995;81:744-750.

Tan PL, Lee TL, weed WA. Carbon dioxide absorption and gas exchange during pelvic laparoscopy. Can J Anaesth. 1992;39:677-681.

David CM, Goldwasser R. Como Iniciar e Manter o Paciente em Ventilação Mecânica. Ventilação Mecânica: da Fisiologia à Prática Clínica. 2001;23:291-306.

Abraham E, Yoshihara G. Cardiorespiratory effects of pressure controlled ventilation in severe respiratory failure. Chest. 1990;98:1445-1449.

Tugrul M, Camci E, Karadeniz H. Comparison of volume controlled with pressure controlled ventilation during one-lung anaesthesia. Br J Anaesth. 1997;79:306-310.

Auler Junior JO, Carmona MJ, Silva MH. Haemodynamic effects of pressure-controlled ventilation versus volume-controlled ventilation in patients submitted to cardiac surgery. Clin Intensive Care. 1995;6:100-106.

Rappaport SH, Shpiner R, Yoshihara G. Randomized, prospective trial of pressure-limited versus volume-controlled ventilation in severe respiratory failure. Crit Care Med. 1994;22:22-32.

Bonasa J. Princípios Básicos dos Ventiladores Artificiais. Ventilação Mecânica: Básico. 2000;4:69-124.

Koivusalo AM, Lindgren L. Effects of carbon dioxide pneumoperitoneum for laparoscopic cholecystectomy. Acta Anaesthesiol Scand. 2000;44:834-841.

Mullett CE, Viale JP, Sagnard PE. Pulmonary CO2 elimination during surgical procedures using intra- or extraperitoneal CO2 insufflation. Anesth Analg. 1993;76:622-626.

Lister DR, Rudston-Brown B, Warriner CB. Carbon dioxide absorption is not linearly related to intraperitoneal carbon dioxide insufflation pressures in pigs. Anesthesiology. 1994;80:129-136.

Baraka A, abbour S, Hammoud R. End-tidal carbon dioxide tension during laparoscopic cholecystectomy: Correlation with the baseline value prior to carbon dioxide insufflation. Anaesthesia. 1994;49:304-306.

Wittgen C, Andrus C, Fitzgerald S. Analysis of the hemodynamic and ventilatory effects of laparoscopic cholecystectomy. Arch Surg. 1991;126:997-1001.

Fitzgerald S, Andrus C, Baudendistel L. Hypercarbia during carbon dioxide pneumoperitoneum. Am J Surg. 1992;163:186-190.

Joris J, Cigarini I, Legrand M. Metabolic and respiratory changes after cholecystectomy performed via laparotomy or laparoscopy. Br J Anaesth. 1992;69:341-345.

Monk TG, Weldon BC, Lemon D. Alterations in pulmonary function during laparoscopic surgery. Anesth Analg. 1993;76:S274.

Wahba RW, Mamazza J. Ventilatory requirements during laparoscopic cholecystectomy. Can J Anaesth. 1993;40:206-210.

Feig BW, Berger DH, Dougherty TB. Pulmonary effects of CO2 abdominal insufflation (CAI) during laparoscopy in high-risk patients. Anesth Analg. 1994;78:S108.

Hirvonen EA, Nuutinen LS, Kauko M. Hemodynamic changes due to Trendelenburg positioning and pneumoperitoneum during laparoscopic hysterectomy. Acta Anaesthesiol Scand. 1995;39:949-955.

Critchley LA, Critchley JA, Gin T. Haemodynamic changes in patients undergoing laparoscopic cholecystectomy: measurement by transthoracic electrical bioimpedance. Br J Anaesth. 1993;70:681-683.

Joris JL. Noirot DP, Legrand MJ et al - Hemodynamic changes during laparoscopic cholecystectomy. Anesth Analg. 1993;76:1067-1071.

Williams MD, Murr PC. Laparoscopic insufflation of the abdomen depresses cardiopulmonary function. Surg Endosc. 1993;7:12-16.

Feig BW, Berger BH, Dupuis JF. Hemodynamic effects of CO2 abdominal insufflation (CAI) during laparoscopy in high-risk patients. Anesth Analg. 1994;78:S-109.

Dhoste K. Haemodynamic and ventilatory changes during laparoscopic cholecystectomy in elderly ASA III patients. Can J Anaesth. 1996;43:783-788.

Haxby EJ, Gray MR, Rodriguez C. Assessment of cardiovascular changes during laparoscopic hernia repair using oesophageal Doppler. Br J Anaesth. 1997;78:515-519.

Hein HA, Joshi GP, Ramsay MA. Hemodynamic changes during laparoscopic cholecystectomy in patients with severe cardiac disease. J Clin Anesth. 1997;9:261-265.

Walder AD, Aitkenhead AR. Role of vasopressin in the haemodynamic response to laparoscopic cholecystectomy. . .

Zollinger A, Krayer S, Singer T. Haemodynamic effects of pneumoperitoneum in elderly patients with an increased cardiac risk. Eur J Anaesthesiol. 1997;14:266-275.

Breton G, Poulin E, Fortin C. Evaluation clinique et hémodynamique des cholécystectomies par voie laparoscopique. Ann Chir. 1992;45:783-790.

Liu SY, Leighton T, Davis I. Prospective analysis of cardiopulmonary responses to laparoscopic cholecystectomy. J Laparoendosc Surg. 1991;1:241-246.

Reid CW, Martineau RJ, Hull KA. Haemodynamic consequences of abdominal insufflation with CO2 laparoscopic cholecystectomy. Can J Anaesth. 1992;39:132.

McLaughlin JG, Bonnell BW, Scheeres DE. The adverse hemodynamic effects related to laparoscopic cholecystectomy. Anesthesiology. 1992;77:70.

Westerband A, Van De Water J, Amzallag M. Cardiovascular changes during laparoscopic cholecystectomy. Surg Gynecol Obstet. 1992;175:535-538.

Cunningham AJ, Turner J, Rosenbaum S. Transoeso- phageal echocardiographic assessment of haemodynamic function during laparoscopic cholecystectomy. Br J Anaesth. 1993;70:621-625.

Feig BW, Berger DH, Dougherty TB. Pharmacologic intervention can reestablish baseline hemodynamic parameters during laparoscopy. Surgery. 1994;116:733-739.

Myre K, Rostrup M, Buanes T. Plasma catecholamines and haemodynamic changes during pneumoperitoneum. Acta Anaesthesiol Scand. 1998;42:343-347.

Viinamki O, Punnonen R. Vasopressin release during laparoscopy: role of increased intra-abdominal pressure. Lancet. 1982;16:175-176.

Melville RJ, Frizis HI, Forsling ML. The stimulus for vasopressin release during laparoscopy. Surg Gynecol Obstet. 1985;161:253-256.

Joris JL, Chiche JD, Canivet JL. Hemodynamic changes induced by laparoscopy and their endocrine correlates: effects of clonidine. J Am Coll Cardiol. 1998;32:1389-1396.

Mann C, Boccara G, Pouzeratte Y. The relationship among carbon dioxide pneumoperitoneum, vasopressin release, and hemodynamic changes. Anesth Analg. 1999;89:278-283.

Koivusalo AM, Kellokumpu I, Scheinin M. Randomized comparison of the neuroendocrine response to laparoscopic cholecystectomy using either conventional or abdominal wall lift techniques. Br J Surg. 1996;83:1532-1536.

O'Leary E, Hubbard K, Tormey W. Laparoscopic cholecystectomy: haemodynamic and neuroendocrine response after pneumoperitoneum and changes in position. Br J Anaesth. 1996;76:640-644.

Koivusalo AM, Scheinin M, Tikkanen I. Effects of esmolol on haemodynamic response to CO2 pneumoperitoneum for laparoscopic surgery. Acta Anaesthesiol Scand. 1998;42:510-517.

Ho HS, Gunther RA, Wolfe BM. Intraperitoneal carbon dioxide insufflation and cardiopulmonary functions: Laparoscopic cholecystectomy in pigs. Arch Surg. 1992;127:928-933.

Odeberg S, Ljungqvist O, Svenberg T. Haemodynamic effects of pneumoperitoneum and the influence of posture during anaesthesia for laparoscopic surgery. Acta Anaesthesiol Scand. 1994;38:276-283.

Hirvonen EA, Nuutinen LS, Vuolteenaho O. Hormonal responses and cardiac filling pressures in head-up or head-down position and pneumoperitoneum in patients undergoing operative laparoscopy. Br J Anaesth. 1997;78:128-133.

Iwase K, Takenaka H, Yagura A. Hemodynamic changes during laparoscopic cholecystectomy in patients with heart disease. Endoscopy. 1992;24:771-773.

Fox LG, Hein HAT, Gawey BJ. Physiologic alterations during laparoscopic cholecystectomy in ASA III & IV patients. Anesthesiology. 1993;79:55.

Smith I, Benzie RJ, Gordon NL. Cardiovascular effects of peritoneal insufflation of carbon dioxide for laparoscopy. Br Med J. 1971;14:410-411.

Goodale RL, Beebe DS, McNevin MP. Hemodynamic, respiratory, and metabolic effects of laparoscopic cholecystectomy. Am J Surg. 1993;166:533-537.

Ishizaki Y, Bandai Y, Shimomura K. Safe intraabdominal pressure of carbon dioxide pneumoperitoneum during laparoscopic surgery. Surgery. 1993;114:549-554.

Joris J, Honore P, Lamy M. Changes in oxygen transport and ventilation during laparoscopic cholecystectomy. Anesthesiology. 1992;77:149.

Kazama T, Ikeda K, Kato T. Carbon dioxide output in laparoscopic cholecystectomy. Br J Anaesth. 1996;76:530-535.

Nunn JF, Hill DW. Respiratory dead space and arterial to end-tidal carbon dioxide tension difference in anesthetized man. Appl Physiol. 1960;15:383-389.

Askrog V. Changes in (a-A) CO2 difference and pulmonary artery pressure in anesthetized man. J Appl Physiol. 1966;21:1299-1305.

Bongard FS, Pianim NA, Leighton TA. Helium insufflation for laparoscopic operation. Surg Gynecol Obstet. 1993;177:140-146.

Odeberg S, Sollevi A. Pneumoperitoneum for laparoscopic surgery does not increase venous admixture. Eur J Anaesthesiol. 1995;12:541-548.

5dd6cec60e88254f6113f286 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections