Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1590/S0034-70942005000100014
Brazilian Journal of Anesthesiology
Special Article

Anestesia para o recém-nascido submetido a cirurgia cardíaca com circulação extracorpórea

Anesthesia for the newborn submitted to cardiac surgery with cardiopulmonary bypass

Sérgio Bernardo Tenório; Débora O Cumino; Daniela B G Gomes

Downloads: 0
Views: 1131

Resumo

JUSTIFICATIVA E OBJETIVOS: As doenças congênitas do coração atingem 0,8% dos recém-nascidos (RN) vivos, sendo que muitos necessitam de correção cirúrgica ainda no período neonatal. A cirurgia cardíaca com circulação extracorpórea (CEC), nesta faixa etária, associa-se a maior incidência de complicações, devido à imaturidade funcional da criança, à falta de equipamentos de CEC que sejam totalmente compatíveis com as dimensões do RN e às dificuldades técnicas para correção da lesão cardíaca. Este artigo tem o propósito de apresentar os aspectos relacionados à técnica anestésica, a CEC e seus efeitos em RN. CONTEÚDO: Elevadas doses de fentanil ou sufentanil provêm adequada anestesia sem interferir na estabilidade cardiocirculatória. A depressão respiratória residual dos opióides não é problema neste grupo de pacientes porque a maioria necessita assistência respiratória no pós-operatório imediato. A entrada em CEC pode ser acompanhada de hipotensão arterial por manipulação do coração e/ou sangramento. O posicionamento inadequado das cânulas venosas e aórtica pode causar sérias complicações, como insuficiente fluxo encefálico ou dificuldade na drenagem venosa. São comuns a utilização de hipotermia profunda e a parada circulatória total durante a CEC. A hipotermia modifica a viscosidade do sangue que é tratada com hemodiluição e traz implicações para a correção do pH (alfa-stat versus pH stat). No desmame da CEC é freqüente ocorrer baixo débito cardíaco e ajustes em um ou em todos os seus componentes ( pré-carga, contratilidade, pós-carga e freqüência cardíaca) podem ser necessários. Além das drogas clássicas, como a adrenalina e a dopamina, pode ser necessário o emprego de outras substâncias como a aprotinina, o óxido nítrico ou os inibidores da fosfodiesterase. CONCLUSÕES: O anestesiologista tem papel preponderante no ajuste da homeostasia durante o período peri-operatório. Conhecimentos sobre o tipo de lesão cardíaca, a correção a ser realizada, a resposta do organismo a CEC podem ser úteis no manuseio destas crianças.

Palavras-chave

CIRURGIA, Cardíaca, CIRURGIA, Cardíaca

Abstract

BACKGROUND AND OBJECTIVES: Congenital heart diseases affect 0.8% of liveborn infants and many need neonatal surgical correction. Cardiac surgery with cardiopulmonary bypass (CPB) in this age is associated to higher risk of complications related to child's functional immaturity, lack of CPB equipment fully compatible with neonate (NN) size and technical difficulties to correct cardiac defects. This article aimed at describing aspects related to anesthetic technique, CPB and their effects on NN. CONTENTS: High fentanyl or sufentanil doses promote adequate anesthesia without interfering with cardiocirculatory stability. Opioids residual respiratory depression is not a problem for these patients because most of them will need immediate postoperative respiratory assistance. CPB may be followed by heart manipulation-induced hypotension and/or bleeding. Inadequate venous and aortic cannula position may lead to severe complications, such as insufficient brain flow or difficult venous drainage. Deep hypothermia and total circulatory arrest are common during CPB. Hypothermia changes blood viscosity, which is treated with hemodilution and has implications on pH correction (alpha-stat versus pH stat). Low cardiac output is common during CPB weaning and adjustments in one or all its components (preload, contractility, afterload and heart rate) may be necessary. In addition to classic drugs, such as epinephrine and dopamine, other substances may be needed, such as aprotinin, nitric oxide or phosphodiesterase inhibitors. CONCLUSIONS: Anesthesiologists play a major role in adjusting perioperative homeostasis. Understanding the type of cardiac disease, the correction to be performed and body response to CPB may be useful for the management of those children.

Keywords

SURGERY, Cardiac, SURGERY, Cardiac

References

Lewis A, Freed MD, Heymann M. Side effects of therapy with prostaglandin E1 in infants with critical congenital heart disease. Circulation. 1981;64:893-898.

Robinson S, Gregory GA. Fentanyl-air-oxygen anesthesia for ligation of patent ductus arteriosus in preterm infants. Anesth Analg. 1981;60:331-334.

Anand KJ, Hickey PR. Halothane-morphine compared with high-dose sufentanil for anesthesia and postoperative analgesia in neonatal cardiac surgery. N Engl J Med. 1992;326:1-9.

Hickey PR, Hansen DD. High-dose fentanyl reduces intraoperative ventricular fibrillation in neonates with hypoplastic left heart syndrome. J Clin Anesth. 1991;3:295-300.

Hickey PR, Hansen DD, Norwood WI. Anesthetic complications in surgery for congenital heart disease. Anesth Analg. 1984;63:657-664.

Hickey PR, Hansen DD. Fentanyl- and sufentanil-oxygen-pancuronium anesthesia for cardiac surgery in infants. Anesth Analg. 1984;63:117-124.

Lake CL. Anesthesia for Patients with Congenital Heart Disease, em: Kaplan JA, Reich e Konstadt - Cardiac Anesthesia. 1999:785-820.

Hickey PR, Hansen DD, Wessel DL. Blunting of stress response in the pulmonary circulation of infants by fentanyl. Anesth Analg. 1985;64:1137-1142.

Tenório SB. Anestesia em Cirurgia Cardíaca em Crianças, em: Manica J - Anestesiologia. 1997:507-522.

Laussen PC, Wessel DL. Anesthesia for Congenital Heart Disease, em: Gregory G - Pediatric Anesthesia. 2002:467-539.

Gruber EM, Laussen PC, Casta A. Stress response in infants undergoing cardiac surgery: a randomized study of fentanyl bolus, fentanyl infusion, and fentanyl-midazolam infusion. Anesth Analg. 2001;92:882-890.

Weale NK, Rogers CA, Cooper R. Effects of remifentanil infusion rate on stress response to the pre-bypass phase of paediatric cardiac surgery. Br J Anaesth. 2004;92:187-194.

Baum VC, Palmisano B. The immature heart and anesthesia. Anesthesiology. 1997;87:1529-1548.

Lynch C. Differential depression of myocardial contractility by halothane and isoflurane in vitro. Anesthesiology. 1986;64:620-631.

Friesen RH, Lichtor JL. Cardiovascular effects of inhalation induction with isoflurane in infants. Anesth Analg. 1983;62:411-414.

Friesen RH, Lichtor JL. Cardiovascular depression during halothane anesthesia in infants: a study of three induction techniques. Anesth Analg. 1982;61:42-45.

Russell IA, Miller Hance WC, Gregory G. The safety and efficacy of sevoflurane anesthesia in infants and children with congenital heart disease. Anesth Analg. 2001;82:1152-1158.

Rosen DA, Roen KR. Anomalies of the Aortic Arch and Valve, em: Lake CL - Pediatric Cardiac Anesthesia. 1998:431-470.

Nicolson SC, Steven JM, Jobes DR. Hypoplastic Left Heart Syndrome, em: Lake CL - Pediatric Cardiac Anesthesia. 1998:337-352.

Kern FH, Schulman SR, Lawson S. Extracorporeal Circulation and Circulatory Assist Devices in the Pediatric Patient, em: Lake CL - Pediatric Cardiac Anesthesia. 1998:219-258.

Hickey PR, Wessel DC. Anesthesia for Treatment of Congenial Heart Disease, em: Kaplan JA - Cardiac Anesthesia. 1987:635-724.

Hickey PR. Anesthetic Management during Cardiopulmonary bypass for Congenital Heart Disease, em: Jonas RA, Elliot MJ - Cardiopulmonary Bypass in Neonates, Infants and Young Children. 1994:39-53.

Yu RG, Zhou JX, Liu J. Prediction of volatile anaesthetic solubility in blood and priming fluid for extracorporeal circulation. Br J Anaesth. 2001;86:338-344.

Price SL, Brown DL, Carpenter RL. Isoflurane elimination via a bubble oxygenator during extracorporeal circulation. J Cardiothorac Anesth. 1988;2:41-44.

Kern FH, Morana NJ, Sears JJ. Coagulation defects in neonates during cardiopulmonary bypass. Ann Thorac Surg. 1992;54:541-546.

Oliver WC. Overview of heparin and protamin management and dose regimens of the pediatric cardiac surgical. Sem Cardiothorac Vasc Anesth. 2003;4:387-410.

Martindale SJ, Shayevitz JR, D´Errico C et al. The activated coagulation time: suitability for monitoring heparin effect and neutralization during pediatric cardiac surgery. J Cardiothorac Vasc Anesth. 1996;10:458-463.

Kern FH, Schulman SR, Lawson S. Extracorporeal Circulation and Circulatory Assist Devices in the Pediatric Patent, em: Lake CL - Pediatric Cardiac Anesthesia. 1998:229.

Seifert HA, Jobes DR, Tem Have TT. Adverse events after protamin administration after cardiopulmonary bypass in infants and children. Anesth Analg. 2003;97:383-389.

Boigner H, Lechner E, Brock H. Life threatening cardiopulmonary failure in an infant following protamine reversal of heparin after cardiopulmonary bypass. Paed Anaesth. 2001;11:729-732.

Taylor KM. Anesthesia Techniques for Cardiopulmonary bypass in Children in Cardiopulmonary Bypass. 1983:41-50.

Scallan MJ. Brain injury in children with congenital heart disease. Paed Anaesth. 2003;13:284-293.

Jonas R. Flow Reduction and Cessation; em: Jonas RA, Elliott MJ - Cardiopulmonary Bypass in Neonates, Infants and Young Children. 1994:67.

Mangano CM. Cardiac Surgery and Central Nervous System Injury: the Importance of Hypothermia during Cardiopulmonary Bypass, em: Blanck TJJ - Neuroprotection. 1997:97-237.

Greeley WJ, Kern FH, Ungerleider RM. The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants and children. J Thorac Cardiovasc Surg. 1991;101:783-794.

Mault JR, Ohtake S, Klingensmith ME. Cerebral metabolism and circulatory arrest: effects of duration and strategies for protection. Ann Thorac Surg. 1993;55:57-63.

Shum-Tim D, Nagashima M, Shinoka T. Posischemic hyperthermia exacerbates neurologic injury after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 1998;116:780- 792.

Menache CC, du Plessis AJ, Wessel DL. Current incidence of acute neurologic complications after open-heart operations in children. Ann Thorac Surg. 2002;73:1752-1758.

Farstad M, Heltne JK, Rynning SE. Fluid extravasation during cardiopulmonary bypass in piglets - effects of hypothermia and different cooling protocols. Acta Anaesthesiol Scand. 2003;47:397-406.

Siegman MG, Anderson RV, Balaban RS. Barbiturates impair cerebral metabolism during hypothermic circulatory arrest. Ann Thorac Surg. 1992;54:1131-1136.

Swain JA. Assessment by Nuclear Magnetic Resonance Spectroscopy of the Effects of Cardiopulmonary Bypass, Hypothermia, and Circulatory Arrest on the Brain, em. Butternworth-Heinemann. 1996:265-270.

Shapiro BA, Harrison RA, Cane RD. Clinical Application of Blood Gases. 1989:177.

Lloyd-Thomas A. Acid Base Balance, em: Jonas RA, Elliott MJ - Cardiopulmonary Bypass in Neonates, Infants and Young Children. 1994:100-109.

Piccioni MA, Auler JOC Jr. Equilíbrio ácido-base durante hipotermia. Rev Bras Anestesiol. 1992;42:297-302.

du Plessis AJ, Jonas RA, Wypij D. Perioperative effects of alpha-stat versus pH-stat: strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg. 1997;114:991-1001.

Bellinger DC, Wypij D, du Plessis AJ. Developmental and neurologic effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg. 2001;121:374-383.

Priestley MA, Golden JA, O'Ohara IB. Comparison of neurologic outcome after deep hypothermic circulatory arrest with alpha-stat and pH-stat cardiopulmonary bypass in newborn pigs. J Thorac Cardiovasc Surg. 2001;121:336-343.

Kern FH, Morana NJ, Sears JJ. Coagulation defects in neonates during cardiopulmonary bypass. Ann Thorac Surg. 1992;54:541-546.

D´Errico C, Shayevitz JR, Martindale SJ. Age-related differences in heparin sensitivity and heparin-protamin interactions in cardiac surgery patients. J Cardiothoracic Vasc Anest. 1996;10:451-457.

Manno CS, Hedberg KW, Kim HC et al. Comparison of the hemostatic effects of fresh whole blood, stored whole blood, and components after open heart surgery in children. Blood. 1991;77:930-936.

Stayer SA, Diaz LK, East DL. Changes in respiratory mechanics among infants undergoing heart surgery. Anesth Analg. 2004;98:49-55.

Laffey JG, Boylan JF, Cheng DC. The systemic inflammatory response to cardiac surgery: implications for the anesthesiologist. Anesthesiology. 2002;97:215-252.

Brix-Christensen V. The systemic inflammatory response after cardiac surgery with cardiopulmonary bypass in children. Acta Anaesthesiol Scand. 2001;45:671-679.

Glavind-Kristensen M, Brix-Christensen V, Toennesen E. Pulmonary endothelial dysfunction after cardiopulmonary bypass in neonatal pigs. Acta Anaesthesiol Scand. 2002;46:853-859.

Pearl RG. Inhaled nitric oxide: The past, the present, and the future. Anesthesiology. 1993;78:413-416.

Wessel DL. Managing low cardiac output syndrome after congenital heart surgery. Crit Care Med. 2001;29:(Suppl10): S220-S230.

Hoffman TM, Wernovsky G, Atz AM. Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation. 2003;107:996-1002.

Kern FH, Schulman SR, Greeley WJ. Cardiopulmonary Bypass: Techniques and Effects, em: Greeley WJ - Perioperative Management of the Patient With Congenital Heart Disease. 1996:67-120.

Wessel DL, Adatia L, Thompson J. Inhale nitric oxide for the treatment of pulmonary hypertension before and after cardiopulmonary bypass. Circulation. 1992;86:I-776.

Atz AM, Adatia I, Wessel DL. Rebound pulmonary hypertension after inhalation of nitric oxide. Ann Thorac Surg. 1996;62:1759-1764.

Journois D, Pouard P, Mauriat P. Inhaled nitric oxide as a therapy for pulmonary hypertension after operations for congenital heart defects. J Thorac Cardiovasc Surg. 1994;107:1129-1135.

Lindberg L, Forsell C, Jogi P. Effects of dexamethasone on clinical course, C-reactive protein, S100B protein and von Willebrand factor antigen after paediatric cardiac surgery. Br J Anaesth. 2003;90:728-732.

Schroeder VA, Pearl JM, Schwartz SM. Combined steroid treatment for congenital heart surgery improves oxygen delivery and reduces postbypass inflammatory mediator expression. Circulation. 2003;107:2823-2828.

Wippermann CF, Schmid FX, Eberle B. Reduced inotropic support after aprotinin therapy during pediatric cardiac operations. Ann Thorac Surg. 1999;67:173-176.

Shinfeld A, Zippel D, Lavee J. Aprotinin improves hemostasis after cardiopulmonary bypass better than single-donor platelet concentrate. Ann Thorac Surg. 1995;59:872-876.

Tempe DK, Virmani S. Coagulation abnormalities in patients with cyanotic congenital heart disease. J Cardiothorac Vasc Anesth. 2002;16:752-765.

Mojcik C, Levy JH. Aprotinin and the systemic inflammatory response after cardiopulmonary bypass. Ann Thorac Surg. 2001;71:745-754.

D´Errico CC, Munro HM, Bove EL. Pro: the routine use of aprotinin during pediatric cardiac surgery is a benefit. J Cardiothorac Vasc Anesth. 1999;13:782-784.

Williams GD, Bratton SL, Riley EC. Efficacy of epslon-aminocaproic acid in children undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 1999;13:304-308.

Iranami H, Okamoto K, Kimoto Y. Use of corfolsin dalopate following cardiac surgery in a neonate. Anesthesiology. 2002;97:503-504.

5dd7e30b0e8825205e13f288 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections