Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1590/S0034-70942004000500005
Brazilian Journal of Anesthesiology
Scientific Article

Isoflurano em emulsão lipídica por via venosa promove estabilidade cardiovascular respiratória em modelo experimental

Intravenous isoflurane in lipid emulsion promotes cardiovascular and respiratory stability. Experimental model

Lígia Andrade da Silva Telles Mathias; Luiz Piccinini Filho; José Carlos Rittes; Flávia Salles Souza; José Ricardo Pinotti Pedro; Wagner Cirillo; Joaquim Edson Vieira

Downloads: 0
Views: 782

Resumo

JUSTIFICATIVA E OBJETIVOS: A administração venosa de anestésico inalatório pode causar lesão pulmonar. Halotano em solução lipídica por via venosa promove anestesia com estabilidade hemodinâmica e respiratória. Esta pesquisa procurou estabelecer a dose de indução para emulsão lipídica de isoflurano a 10% e observar as condições cardiovasculares e respiratórias, em anestesia experimental. MÉTODO: Sete porcos machos foram selecionados. Os animais receberam infusão de propofol para as preparações cirúrgicas invasivas: dissecção de artéria femoral e veia jugular, sensor de ecodopplercardiografia no esôfago. Foram registrados freqüência cardíaca (FC), eletrocardiograma (ECG), pressão arterial sistólica (PAS), diastólica (PAD), média (PAM), venosa central (PVC), índice cardíaco (IC), débito cardíaco (DC) e índice bispectral (BIS). As frações inspirada e expirada dos gases respiratórios foram analisadas continuamente. Iniciada infusão da emulsão lipídica de isoflurano até o índice bispectral atingir valor de 40 ± 5 (BIS40). Os animais foram mantidos anestesiados e submetidos a laparotomia exploradora para sutura gástrica. RESULTADOS: O volume total infundido para atingir BIS40 foi 25,6 ± 11,2 ml (2,56 ml de isoflurano). O tempo médio para atingir BIS40 foi 15,6 ± 6,9 minutos. Maior velocidade de infusão reduziu o tempo para os animais atingirem BIS40. Condições cardiovasculares e respiratórias mostraram-se estáveis durante a experimentação. A freqüência cardíaca aumentou com a elevação da fração expirada do isoflurano. CONCLUSÕES: A infusão venosa do isoflurano em solução emulsificada promoveu diminuição do índice bispectral, estabilidades hemodinâmica e respiratória e correlação direta com sua fração expirada. O uso do isoflurano em emulsão lipídica pode se constituir em modalidade segura de aplicação deste anestésico.

Palavras-chave

ANESTESIA, ANESTESIA, ANESTÉSICOS, ANESTÉSICOS, ANIMAL, FARMACOTÉCNICA

Abstract

BACKGROUND AND OBJECTIVES: Intravenous infusion of inhalation anesthetics may promote lung injury. Intravenous halothane in lipid emulsion induces anesthesia with hemodynamic and respiratory stability. This investigation aimed at establishing the induction dose of isoflurane in 10% lipid emulsion and at observing cardiovascular and respiratory effects in experimental anesthesia. METHODS: This study involved 7 male piglets. Animals received intravenous propofol for invasive surgical preparations: femoral artery and jugular vein dissection and esophageal ecodopplercardiographic sensor. Heart rate (HR), electrocardiography (ECG), systolic (SBP), diastolic (DBP), mean (MBP) blood pressure and central venous pressure (CVP), cardiac index (CI) and bispectral index (BIS) were recorded. Inspired and expired gases fractions were continuously evaluated. Isoflurane lipid emulsion was injected until bispectral index had decreased to 40 ± 5 (BIS40). Animals were kept anesthetized and submitted to laparotomy for gastric suture. RESULTS: Total volume to reach BIS40 was 25.6 ± 11.2 mL (2.56 mL isoflurane). Mean time to reach BIS40 was 15.6 ± 6.9 minutes. The higher the infusion rate the shorter the time to reach BIS40. Cardiovascular and respiratory conditions were stable throughout the experiment. Heart rate has increased with increased end tidal isoflurane. CONCLUSIONS: Intravenous isoflurane in lipid emulsion has promoted bispectral index decrease, hemodynamic and respiratory stability and direct correlation with its expired fraction. Intravenous isoflurane in lipid emulsion may be a safe modality for this anesthetic delivery.

Keywords

ANESTHESIA, ANESTHESIA, ANESTHETICS, ANESTHETICS, ANIMAL, PHARMACOTECHNIQUE

References

Kopriva CJ, Lowenstein E. An anesthetic accident: cardiovascular collapse from liquid halothane delivery. Anesthesiology. 1969;30:246-247.

Sutton J, Harrison GA, Hickie JB. Accidental intravenous injection of halothane. Case report.. Br J Anaesth. 1971;43:513-520.

Berman P, Tattersall M. Self-poisoning with intravenous halothane. Lancet. 1982;1(8267):340.

Dwyer R, Coppel DL. Intravenous injection of liquid halothane. Anesth Analg. 1989;69:250-255.

Sandison JW, Sivapragasam S, Hayes JA. An experimental study of pulmonary damage associated with intravenous injection of halothane in dogs. Br J Anaesth. 1970;42:419-424.

Kawamoto M, Suzuki N, Takasaki M. Acute pulmonary edema after intravenous liquid halothane in dogs. Anesth Analg. 1992;74:747-752.

Cascorbi HF, Helrich M, Krantz Jr JC. Hazards of methoxyflurane emulsions in man. Anesth Analg. 1968;47:557-559.

von Dardel O, Mebius C, Mossberg T. Fat emulsion as a vehicle for diazepam. A study of 9492 patients. Br J Anaesth. 1983;55:41-47.

Doenicke A, Roizen MF, Hoernecke R. Haemolysis after etomidate: comparison of propylene glycol and lipid formulations. Br J Anaesth. 1997;79:386-388.

Nightingale P, Healy TE, Hargreaves J. Propofol in emulsion form: induction characteristics and venous sequelae. Eur J Anaesthesiol. 1985;2:361-368.

Johannesson G, Alm P, Biber B. Halothane dissolved in fat as an intravenous anaesthetic to rats. Acta Anaesthesiol Scand. 1984;28:381-384.

Biber B, Johannesson G, Lennander O. Intravenous infusion of halothane dissolved in fat. Haemodynamic effects in dogs. Acta Anaesthesiol Scand. 1984;28:385-389.

Eger RP, MacLeod BA. Anaesthesia by intravenous emulsified isoflurane in mice. Can J Anaesth. 1995;42:173-176.

Musser JB, Fontana JL, Mongan PD. The anesthetic and physiologic effects of an intravenous administration of a halothane lipid emulsion (5% vol/vol). Anesth Analg. 1999;88:671-675.

Cascorbi HF. IV halothane anesthesia. Anesth Analg. 1999;89:1585.

Egan TD, Kern SE, Johnson KB. The pharmacokinetics and pharmacodynamics of propofol in a modified cyclodextrin formulation (Captisol) versus propofol in a lipid formulation (Diprivan): an electroencephalographic and hemodynamic study in a porcine model. Anesth Analg. 2003;97:72-79.

Coetzee JF, Stewart LJ. Fresh gas flow is not the only determinant of volatile agent consumption: a multi-centre study of low-flow anaesthesia. Br J Anaesth. 2002;88:46-55.

Eger II EI. The pharmacology of isoflurane. Br J Anaesth. 1984;56(^s1):71S-99S.

Tanaka S, Tsuchida H, Nakabayashi K. The effects of sevoflurane, isoflurane, halothane, and enflurane on hemodynamic responses during an inhaled induction of anesthesia via a mask in humans. Anesth Analg. 1996;82:821-826.

Malan Jr TP, DiNardo JA, Isner RJ. Cardiovascular effects of sevoflurane compared with those of isoflurane in volunteers. Anesthesiology. 1995;83:918-928.

Inada T, Inada K, Kawachi S. Haemodynamic comparison of sevoflurane and isoflurane anaesthesia in surgical patients. Can J Anaesth. 1997;44:140-145.

Pagel PS, Kampine JP, Schmeling WT. Influence of volatile anesthetics on myocardial contractility in vivo: desflurane versus isoflurane. Anesthesiology. 1991;74:900-907.

Pagel PS, Kampine JP, Schmeling WT. Comparison of the systemic and coronary hemodynamic actions of desflurane, isoflurane, halothane, and enflurane in the chronically instrumented dog. Anesthesiology. 1991;74:539-551.

Yli-Hankala A, Randell T, Seppala T. Increases in hemodynamic variables and catecholamine levels after rapid increase in isoflurane concentration. Anesthesiology. 1993;78:266-271.

Ebert TJ, Muzi M. Sympathetic hyperactivity during desflurane anesthesia in healthy volunteers. A comparison with isoflurane. Anesthesiology. 1993;79:444-453.

Weiskopf RB, Moore MA, Eger II EI. Rapid increase in desflurane concentration is associated with greater transient cardiovascular stimulation than with rapid increase in isoflurane concentration in humans. Anesthesiology. 1994;80:1035-1045.

Nakayama M, Hayashi M, Ichinose H. Values of the bispectral index do not parallel the hemodynamic response to the rapid increase in isoflurane concentration. Can J Anaesth. 2001;48:958-962.

Cuignet OY, Baele PM, Van Obbergh LJ. A second-generation blood substitute (perflubron emulsion) increases the blood solubility of modern volatile anesthetics in vitro.. Anesth Analg. 2002;95:368-372.

5dd6e3c20e8825263b13f287 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections