Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1590/S0034-70942004000300015
Brazilian Journal of Anesthesiology
Miscellaneous

Como evitar a formação de substâncias tóxicas durante a absorção de dióxido de carbono pela cal sodada com uso de anestésicos halogenados

Preventing toxic substances production during carbon dioxide absorption by soda lime with halogenate anesthetics

Renato Ângelo Saraiva

Downloads: 0
Views: 752

Resumo

JUSTIFICATIVA E OBJETIVOS: A cal sodada desde o início do seu uso sempre apresentou algumas complicações que resultaram em dificuldade na sua aplicabilidade. No entanto, devido as grandes vantagens que oferecia em relação a redução do fluxo de gases frescos, despoluição da sala de cirurgia e umidificação do sistema de inalação e via aérea, fizeram com que continuassem as pesquisas para que pudesse ser melhorada e corrigida de forma que a continuidade da sua utilização fosse assegurada. Atualmente existe o problema da desidratação com elevação da temperatura e da degradação metabólica dos anestésicos halogenados que necessitam de cuidados especiais para evitar a formação de produtos tóxicos. CONTEÚDO: Existe uma reação em cadeia a partir da cal sodada desidratada ou ressecada com baixos volumes percentuais de água. Há aumento da temperatura, maior absorção de anestésico halogenado para o interior do granulo de cal em seguida maior degradação metabólica das moléculas destes agentes e conseqüentemente a produção de substâncias tóxicas como o Composto A pela reação dos hidróxidos com o sevoflurano. Há também formação de monóxido de carbono produzido da mesma forma pela reação entre os halogenados e as bases fortes da cal. O composto A é nefrotóxico e o monóxido de carbono leva a hipóxia e alterações graves da coagulação do sangue. Além dos cuidados para a hidratação da cal sodada é possível usá-la sem conter as bases fortes como os hidróxidos de potássio e de sódio, contendo apenas hidróxido de cálcio para evitar excessivo aumento da temperatura e grande degradação metabólica dos halogenados sem prejudicar a absorção do dióxido de carbono. CONCLUSÕES: Deve-se ter o cuidado em usar a cal sodada mais recente possível e quando ela fica exposta ao meio ambiente (ar seco) por muitas horas como por exemplo em um final de semana (mais de 48 horas) é recomendável colocar água, de preferência destilada, na relação de 25 ml para cada 500 g de cal. Atualmente a indústria está bem informada sobre o problema da composição da cal, então, deve-se preferir a cal sodada que tenha somente o hidróxido de cálcio e seja totalmente desprovida de hidróxido de potássio e hidróxido de sódio.

Palavras-chave

EQUIPAMENTOS

Abstract

BACKGROUND AND OBJECTIVES: Since the beginning, soda lime use has presented some complications which resulted in its difficult application. However major advantages such as decreasing fresh gas flow, anesthetic consumption and operating room pollution, and improving breathing system and airway humidity, have pushed research forward to improve it and assure the continuity of its use. Currently, there are problems with dehydration, increased temperature and metabolic degradation of halogenate agents, which require special care to prevent toxic substances formation. CONTENTS: There is a chain reaction as from dehydrated or dried out soda lime with very low percent volume of water. There is increased temperature, more halogenate anesthetic absorption by lime granules, followed by higher metabolic degradation of these agents' molecules and, as a consequence, the production of toxic substances, such as Compound A by reaction of hydroxides with sevoflurane. There is also carbon monoxide production by reaction of halogenate anesthetics and strong lime bases. Compound A is nephrotoxic and carbon monoxide may lead to hypoxia and severe coagulation problems. In addition to care with soda lime hydration it is possible to use it without strong bases, such as potassium and sodium hydroxides, with just calcium hydroxide to prevent excessive temperature increase and major metabolic degradation of halogenate anesthetics without impairing carbon dioxide absorption. CONCLUSIONS: Care should be taken to use the newest possible soda lime; and when it is exposed to environment (dry air) for many hours, such as during weekends (more than 48 hours) it is recommended to add distilled water in the ratio of 25 mL to 500 g of soda lime. Industry is currently well aware of lime composition problems so, soda lime containing exclusively calcium hydroxide and totally potassium and sodium hydroxide-free should be preferred.

Keywords

EQUIPMENTS

References

Wilson RE. Sodalime absorbent for industrial purposes. Ind Eng Chem. 1920;12:1000-1006.

Waters RM. Clinical scope and utility of carbon dioxide filtration with inhalation anesthesia. Anesth Analg. 1924;3:20-28.

Waters RM. Advantages and techniques of carbon dioxide filtration with inhalation anesthesia. Anesth Analg. 1926;5:160-166.

Adriani J. The Effect of the varying of moisture content of soda lime upon the efficiency of carbon dioxide absorption. Anesthesiology. 1945;6:163-171.

Adriani J. Disposal of carbon dioxide from devices used for inhalation anesthesia. Anesthesiology. 1944;6:35-52.

Adriani J, Batten DH. The efficiency of moisture of barium and calcium hydroxides in the absorption of CO2 rebreathing appliances. Anesthesiology. 1945;6:35-52.

Adriani J. Soda lime containing indicators. Anesthesiology. 1944;5:45-53.

Hale DE. The rise and fall of soda lime. Anesth Analg. 1967;46:648-655.

Adriani J. Rebreathing in anesthesia. South Med J. 1942;35:798-804.

Grodin WK, Epstein MA, Epstein RA. Mechanisms of halothane adsorption by dry soda-lime. Br J Anaesth. 1982;54:561-565.

Strum DP, Jonson BH, Eger II EI. Stability of sevoflurane in soda lime. Anesthesiology. 1987;67:779-781.

Lin J, Laster MJ, Eger II EI. Absorption and degradation of sevoflurane and isoflurane in a conventional anesthetic circuit. Anesth Analg. 1991;72:785-789.

Frink Jr EJ, Malan TP, Morgan SE. Quantification of the degradation products of sevoflurane in two CO2 absorbants during low-flow anesthesia in surgical patients. Anesthesiology. 1992;77:1064-1069.

Fang ZX, Eger II EI. Factors affecting the concentration of compound A resulting from the degradation of sevoflurane by soda lime and baralyme in a standard anesthetic circuit. Anesth Analg. 1995;81:564-568.

Hanaki C, Fuji K, Morio M. Decomposition of sevoflurane by sodalime. Hiroshima J Med Sci. 1987;36:61-67.

Brown ES, Bakamjian V, Seniff AM. Performance of absorbents: effect of moisture. Anesthesiology. 1959;20:613-617.

Eger II EI, Strum DP. The absorption and degradation of isoflurane and I-653 by dry soda lime at various temperatures. Anesth Analg. 1987;66:1312-1315.

Strum DP, Eger II EI. The degradation, absorption and solubility of volatile anesthetics in soda lime depend on water content. Anesth Analg. 1994;78:340-348.

Fang ZX, Eger II EI, Laster MJ. Carbon monoxide production from degradation of desflurane, enflurane, isoflurane, halothane, and sevoflurane by soda lime and baralyme. Anesth Analg. 1995;80:1187-1193.

Harrison N, Knowles AC, Welchew EA. Carbon monoxide within circle systems. Anaesthesia. 1996;51:1037-1040.

Wissing H, Kuhn I, Warnken U. Carbon monoxide production from desflurane, enflurane, halothane, isoflurane, and sevoflurane with dry soda lime. Anesthesiology. 2001;95:1205-1212.

Braum J, Sitte T, Straub JM. Die reaction on sevoflurane mettrickenem atemkalk: Uberlegungen anlablich eines aktuellen zwischen falls. Anasth Intesivmed. 1998;39:11-16.

Narkool DM, Kirkpaltric JN. Treatment of acute carbon monoxide poising with hyperbaric oxygen: A review of 115 cases. Ann Emerg Med. 1985;14:1168-1182.

Frink Jr EJ, Nogami WM, Morgan SE. High carboxyhemoglobin concentrations occur in swine during desflurane anesthesia in presence of partially dried carbon dioxide absorbents. Anesthesiology. 1997;87:308-316.

Goldberg ME, Cantillo J, Gratz I. Dose of compound A, not sevoflurane, determines changes in the biochemical markers of renal injury in healthy volunteers. Anesth Analg. 1999;88:437-445.

Neumann MA, Laster MJ, Weiskopf RB. The elimination of sodium and potassium hydroxides from desiccated soda lime diminishes degradation of desflurane do carbon monoxide and sevoflurane to compound A but does not compromise carbon dioxide absorption. Anesth Analg. 1999;89:768-773.

5dd7e9050e8825037013f286 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections