Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1590/S0034-70942002000200001
Brazilian Journal of Anesthesiology
Scientific Article

Influência da dexmedetomidina na concentração expirada do sevoflurano: avaliação pelo índice bispectral, taxa de supressão e análise espectral da potência do eletroencefalograma

Influence of dexmedetomidine upon sevoflurane end-expiratory concentration: evaluation by bispectral index, suppression rate and electroencephalographic power spectral analysis

Rogean Rodrigues Nunes; Sara Lúcia Cavalcante

Downloads: 0
Views: 1013

Resumo

JUSTIFICATIVA E OBJETIVOS: A dexmedetomidina, um alfa2-agonista adrenérgico, tem sido descrita como capaz de reduzir o consumo tanto de agentes venosos como inalatórios. O objetivo deste estudo foi avaliar a influência da dexmedetomidina na concentração expirada (CE) do sevoflurano, com monitorização da profundidade da anestesia. MÉTODO: Participaram do estudo 40 pacientes do sexo feminino, estado físico ASA I, submetidas à laparoscopia ginecológica sob anestesia geral mantida com sevoflurano, divididas aleatoriamente em dois grupos: Grupo I (20): sem dexmedetomidina, e Grupo II (20): com dexmedetomidina em infusão contínua no seguinte esquema: Fase rápida (1 µg.kg-1 em 10 minutos), 10 minutos antes da indução da anestesia, seguida por uma fase de manutenção (0,4 µg.kg-1.h-1) até o final da cirurgia. Foram analisados os seguintes parâmetros: PA, FC, BIS, SEF 95%, amplitude relativa na freqüência de banda delta (delta %), taxa de supressão (TS), rSO2, CE, SpO2 e P ET CO2, nos seguintes momentos: M1 - antes da infusão da dexmedetomidina ou solução fisiológica a 0,9%, M2: antes da intubação traqueal (IT), M3: após a IT, M4: antes da incisão, M5: após a incisão, M6: antes da insuflação do CO2, M7: após a insuflação de CO2, M8: 10 minutos após a insuflação de CO2, M9: 10 min após M8, M10: 20 min após M8, M11: 30 min após M8, M12: 40 min após M8 e M13: ao despertar. Anotamos também o tempo de despertar e de alta hospitalar. RESULTADOS: A dexmedetomidina reduziu a concentração expirada de sevoflurano de M4 até M13 (p<0,05), comparando-se GI e GII. Não foram observadas mudanças clinicamente significativas nos parâmetros hemodinâmicos. O tempo de despertar no GI foi 11 ± 0,91 minutos e no GII foi 6,35 ± 0,93 minutos (p < 0,05). O tempo de alta hospitalar no GI foi 7,45 ± 0,69 horas e no GII foi 8,37 ± 0,88 horas (p < 0,05). CONCLUSÕES: A dexmedetomidina é efetiva em reduzir a concentração expirada do sevoflurano, mantendo estabilidade hemodinâmica, sem comprometer o tempo de alta hospitalar, além de promover um despertar mais precoce.

Palavras-chave

ANALGÉSICOS, ANESTÉSICOS, Volátil, MONITORIZAÇÃO, MONITORIZAÇÃO, MONITORIZAÇÃO, MONITORIZAÇÃO

Abstract

BACKGROUND AND OBJECTIVES: Dexmedetomidine, an alpha2-adrenergic agonist, has been described as being able to decrease the demand for both venous and inhalational agents. This study aimed at evaluating the influence of Dexmedetomidine upon sevoflurane end-expiratory concentration (EC) with monitoring the depth of anesthesia. METHODS: Participated in this study 40 female adult patients, physical status ASA I, submitted to gynecological laparoscopy under general anesthesia maintained with sevoflurane, who were randomly divided in two groups: Group I (n=20), without dexmedetomidine; and Group II (n=20), with dexmedetomidine, in continuous infusion, as follows: Rapid phase (1 µg.kg-1 in 10 min-1) 10 minutes before anesthesia induction, followed by a maintenance phase (0,4 µg.kg-1.h-1) throughout the surgery. The following parameters were analyzed: BP, HR, BIS, SEF 95%, delta%, suppression rate (SR), rSO2, CE, SpO2 and P ET CO2, in the following moments: M1 - before dexmedetomidine or 0.9% saline infusion; M2 - prior to intubation; M3 - following intubation; M4 - before incision; M5 - following incision; M6 - before CO2 inflation; M7 - following CO2 inflation; M8 - 10 min after CO2 inflation; M9 - 10 min after M8; M10 - 20 min after M8; M11 - 30 min after M8; M12 - 40 min after M8; and M13 - at emergence. Time for emergence and hospital discharge were also recorded. RESULTS: Dexmedetomidine has decreased sevoflurane end-expiratory concentration from M4 to M13 (p<0.05) when comparing Group I and Group II. No clinically significant changes were observed in hemodynamic parameters. Time for emergence in Groups I and II was 11 ± 0.91 min. and 6.35 ± 0.93 min., respectively (p < 0.05). Time for hospital discharge was 7.45 ± 0.69 h in Group I and 8.37 ± 0.88 h in Group II (p < 0.05). CONCLUSIONS: Dexmedetomidine was effective in decreasing sevoflurane end-expiratory concentration while maintaining hemodynamic stability without impairing time for hospital discharge, in addition to promoting an earlier emergence.

Keywords

ANALGESICS, ANESTHETICS, Volatile, MONITORING, MONITORING, MONITORING, MONITORING

References

Aantaa R, Jaakola ML, Kallio A. Reduction of the minimum alveolar concentration of isoflurane by dexmedetomidine. Anesthesiology. 1997;86:1055-1060.

Aantaa R, Scheinin M. Ahpha2-Adrenergic agents in anaesthesia. Acta Anaesthesiol Scand. 1993;37:433-448.

Prys-Roberts C. Anaesthesia: a practical or impractical construct?. Br J Anaesth. 1987;59:1341-1345.

Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiology. 1998;89:980-1002.

Schwender D, Daunderer M, Klasing S. Power spectral analysis of the electroencephalogram during increasing end-expiratory concentrations of isoflurane, desflurane and sevoflurane. Anaesthesia. 1998;53:335-342.

Schwender D, Daunderer M, Mulzer S. Spectral edge frequency of the electroencephalogram to monitor "depth" of anaesthesia with isoflurane or propofol. Br J Anaesth. 1996;77:179-184.

Bloor BC, Ward DS, Belleville JP. Effects of intravenous dexmedetomidine in humans, II: hemodynamic changes. Anesthesiology. 1992;77:1134-1142.

Kallio A, Scheinin M, Koulu M. Effects of dexmedetomidine, a selective alpha 2-adrenoceptor agonist, on hemodynamic control mechanisms. Clin Pharmacol Ther. 1989;46:33-42.

Viby-Mogensen J, Engbaek J, Eriksson Ll. Good clinical research practice (GCRP) in pharmacodinamyc studies of neuromuscular blocking agents. Acta Anaesthesiol Scand. 1996;40:59-74.

Alkis N, Keçik Y. Oral Metal: Monitoring of cerebral oxygenation by spectroscopy and jugular bulb venous O2 saturation during carotid endarterectomy. Br J Anaesth. 1997;78(A.52):15.

Hungria H. Otorrinolaringologia. 1995:297-306.

Billard V, Gambus PL, Chamoun N. A comparison of spectral edge, delta power, and bispectral index as EEG measures of alfentanil, propofol, and midazolam drug effect. Clin Pharmacol Ther. 1997;61:45-58.

Bhana N, Goa KL, McClenllan KJ. Dexmedetomidine. Drugs. 2000;59:263-268.

Hall JE, Uhrich TD, Barney JA. Sedative, amnestic, and analgesic properties of small-dose dexmedetomidine infusions. Anesth Analg. 2000;93:699-705.

Guo TZ, Jiang JY, Buttermann AE. Dexmedetomidine injection into the locus ceruleus produces antinociception. Anesthesiology. 1997;84:873-881.

De Kock M, Crochet B, Morimont C. Intravenous or epidural clonidine for intra-and postoperative analgesia. Anesthesiology. 1993;79:525-531.

Schmeling WT, Ganjoo P, Staunton M. Pretreatment with dexmedetomidine: altered indices of anesthetic depth for halothane in the neuraxis of cats. Anesth Analg. 1999;88:625-632.

Correa SC, Nacif CC, Reid K. Inhibition of adenylate cyclase in the locus ceruleus mediates the hypnotic response to alpha-2-agonist in the rat. J Pharmacol Exp Ther. 1992;236:1046-1049.

Nacif CC, Correa SC, Chang LL. Perturbation of ion conductance in the locus ceruleus alters the hypnotic response to the alpha-2-adrenergic agonist dexmedetomidine in the locus ceruleus in rats. Anesthesiology. 1994;81:1527-1534.

Kamibayashi T, Maze M. Clinical uses of alpha-2-adrenergic agonists. Anesthesiology. 2000;93:1345-1349.

Lakhlani PP, MacMillan LB, Guo TZ. Substitution of a mutant alpha2A-adrenergic receptor via "hit and run" gene targeting reveals the role of this subtype in sedative, analgesic, and anesthetic-sparing responses in vivo. Proc Natl Acad Sci USA. 1997;94:9950-9955.

McCallum JB, Boban N, Hogan Q. The mechanism of alpha-2-adrenergic inhibition of sympathetic ganglionic transmission. Anesth Analg. 1998;87:503-510.

Scholz J, Tonner PH. [alpha ] -2-adrenoceptor agonists in anaesthesia: a new paradigm. Curr Opin Anaesthesiol. 2000;13:437-442.

Link RE, Dessai K, Hein L. Cardiovascular regulation in mice lacking alpha-2-adrenergic receptor subtypes b and c. Science. 1996;273:803-305.

Ebert TJ, Hall JE, Barney JA. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000;93:382-394.

Khan ZP, Ferguson CN, Jones RM. Alpha-2 - and imidazoline receptor agonists: their pharmacology and therapeutic role. Anaesthesia. 1999;54:146-165.

Benhamou D, Veillette Y, Narchi P. Ventilatory affects of premedication with clonidine. Anesth Analg. 1991;73:799-803.

Ooi R, Pattison J, Feldman AS. The effects of intravenous clonidine on ventilation. Anaesthesia. 1991;46:632-633.

Penon C, Ecoffey C, Cohen SE. Ventilatory response to carbon dioxide after epidural clonidine injection. Anesth Analg. 1991;72:761-764.

Zornow MH. Ventilatory, hemodynamic and sedative effects of the alpha 2 adrenergic agonist, dexmedetomidine. Neuropharmacology. 1991;30:1065-1071.

Belleville JP, Ward DS, Bloor BC. Effects of intravenous dexmedetomidine in humans. Anesthesiology. 1992;77:1125-1133.

Aantaa R, Kanto J, Scheinin M. Dexmedetomidine, an alpha-2-adrenoceptor agonist, reduces anesthetic requirements for patients undergoing gynecologic surgery. Anesthesiology. 1990;73:230-235.

Scheinin H, Jaakola ML, Sjovall S. Intramuscular dexmedetomidine as premedication for general anesthesia. Anesthesiology. 1993;78:1065-1075.

Erkola O, Korttila K, Aho M. A comparison of IM dexmedetomidine and midazolam premedication for elective abdominal hysterectomy. Anesth Analg. 1994;79:646-653.

Aho MS, Erkola O, Scheinin H. Effects of intravenously administered dexmedetomidine on pain after laparoscopic tubal ligation. Anesth Analg. 1991;73:112-118.

Ossipov MH, Harris S, Lloyd P. Antinociceptive interaction between opioids and dexmedetomidine: systemic addtivity and spinal synergy. Anesthesiology. 1990;73:1227-1235.

Aho M, Erkola O, Kallio A. Dexmedetomidine infusion for maintenance of anesthesia in patients undergoing abdominal hysterectomy. Anesth Analg. 1992;75:940-946.

Roizen MF, White PF, Eger EI. Effects of ablation of serotonin or norepinephine brain stem areas on halothane and cyclopropane MACs in rats. Anesthesiology. 1978;78:252-255.

Segal IS, Vickery RG, Walton JK. Dexmedetomidine diminishes halothane anesthetic requirements in rats through a postsynaptic alpha-2-adrenergic receptor. Anesthesiology. 1988;69:818-823.

Buhrer M, Mappes A, Lauber R. Dexmedetomidine decreases thiopental dose requirement and alters distribution pharmacokinetics. Anesthesiology. 1994;80:1216-1227.

Bachand R, Scholz J, Pinaud M. The effects of dexmedetomidine in patients in the intensive care setting. Intensive Care Med. 1999;25(^s1):S160.

Mantz J, Goldfarb G, Lehot J-J. Dexmedetomidine efficacy for ICU postoperative sedation. Anesthesiology. 1999;91:A197.

Fragen RJ, Fitzgerald PC. Effect of dexmedetomidine on the minimum alveolar concentration (MAC) of sevoflurane in adults age 55 to 70 years. J Clin Anesth. 1999;11:466-470.

Brown DV, Avramov MN, Tuman KJ. The effect of dexmedetomidine on EEG-bispectral index. Anesth Analg. 1999;88:52S.

5dd595fa0e88259073c8fca8 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections