Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1016/j.bjane.2025.844623
Brazilian Journal of Anesthesiology
Original Investigation

Effect of PEEP on lung aeration in pediatric patients after cardiac surgery: a CT-Based study

Efeito do PEEP na aeração pulmonar em pacientes pediátricos após cirurgia cardíaca: estudo baseado em TC

Solange C. Gimenez, Milene C. Carrilho, Isabela M. Malbouisson, Marcelo Gama de Abreu, Jean-Jacques Rouby, Luiz Marcelo Sá Malbouisson

Downloads: 1
Views: 1164

Abstract

Background

Loss of lung aeration is frequently observed in adult patients following cardiac surgery with cardiopulmonary bypass. Yet, in children, changes in lung aeration following surgical repair of congenital heart defects, and the effects of Positive End-Expiratory Pressure (PEEP), remain uncertain.

Methods

Changes in lung aeration were investigated using volumetric computed tomography in 12 children with congenital acianogenic heart diseases and increased pulmonary flow who underwent total surgical repair under cardiopulmonary bypass. Computed tomography of the lungs was obtained preoperatively during spontaneous breathing and postoperatively during mechanical ventilation with positive end-expiratory pressure of 0, 5 and 10 cm H2O. Gas and tissue lung volume and mass, as well non-aerated, poorly aerated and normally aerated lung compartments were measured.

Results

Median age of patients was 18.3 months, (4 to 24 months), weight was 9.3 § 2.3 kg. Cardiopulmonary bypass duration was 77 § 26 minutes. Preoperatively, pulmonary volume was
545 mL (237‒753 mL), whereby tissue and gas volumes were 48.4% (41.7%‒59.6%), and 51.6% (40.4%‒58.3%), respectively. Non-aerated and normally aerated compartments accounted for 15% and 47.9% of lung tissue, respectively. Postoperatively, at zero PEEP, the non-aerated compartment increased to 27%, while normally-aerated compared decreased to 38.5%. Stepwise PEEP application restored normally aerated lung volume to preoperative levels but did not significantly reduce non-aerated parenchyma.

Conclusion

Loss of lung aeration was pronounced after surgical correction of congenital heart defects. PEEP up to 10 cm H2O restored gas volume but failed to recruit the collapsed parenchyma. Ethical Approval CAPPesq n° 854/01.

Keywords

Cardiopulmonary bypass; Congenital heart defects; Positive end-expiratory pressure; Pulmonary atelectasis; Tomography

Resumo

Introdução

A perda de aeração pulmonar é frequentemente observada em pacientes adultos após cirurgia cardíaca com circulação extracorpórea. No entanto, em crianças, as alterações na aeração pulmonar após a correção cirúrgica de defeitos cardíacos congênitos e os efeitos da Pressão Positiva ao Final da Expiração (PEEP) ainda são incertos.

Métodos

As alterações na aeração pulmonar foram investigadas usando tomografia computadorizada volumétrica em 12 crianças com cardiopatias congênitas acianogênicas e fluxo pulmonar aumentado que passaram por correção cirúrgica total sob circulação extracorpórea. A tomografia dos pulmões foi realizada no pré-operatório durante respiração espontânea e no pós-operatório durante ventilação mecânica com PEEP de 0, 5 e 10 cm H2O. Foram medidos o volume e a massa pulmonar de gás e tecido, assim como os compartimentos pulmonares não aerados, pouco aerados e normalmente aerados.

Resultados

A mediana da idade dos pacientes foi 18,3 meses (4 a 24 meses), com peso de 9,3 ± 2,3 kg. A duração da circulação extracorpórea foi de 77 ± 26 minutos. No pré-operatório, o volume pulmonar foi 545 mL (237–753 mL), sendo que os volumes de tecido e gás foram 48,4% (41,7%–59,6%) e 51,6% (40,4%–58,3%), respectivamente. Os compartimentos não aerados e normalmente aerados corresponderam a 15% e 47,9% do tecido pulmonar, respectivamente. No pós-operatório, com PEEP zero, o compartimento não aerado aumentou para 27%, enquanto o normalmente aerado diminuiu para 38,5%. A aplicação gradual de PEEP restaurou o volume pulmonar normalmente aerado aos níveis pré-operatórios, mas não reduziu significativamente o parênquima não aerado.

Conclusion

A perda de aeração pulmonar foi acentuada após a correção cirúrgica de defeitos cardíacos congênitos. PEEP de até 10 cm H2O restaurou o volume de gás, mas não conseguiu recrutar o parênquima colapsado. Aprovação ética CAPPesq nº 854/01.

Palavras-chave

Circulação extracorpórea; Defeitos cardíacos congênitos; Pressão positiva ao final da expiração; Atelectasia pulmonar; Tomografia

References

1. Rodrigues RR, Sawada AY, Rouby JJ, et al. Computed tomography assessment of lung structure in patients undergoing cardiac surgery with cardiopulmonary bypass. Braz J Med Biol Res. 2011;44:598−605.

2. Tenling A, Hachenberg T, Tyden H, Wegenius G, Hedenstierna G. Atelectasis and gas exchange after cardiac surgery. Anesthesiology. 1998;89:371−8.

3. Froese AB, Bryan AC. Effects of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology. 1974;41: 242−54.

4. Neves FH, Carmona MJ, Auler Jr. JO, Rodrigues RR, Rouby JJ, Malbouisson LM. Cardiac compression of lung lower lobes after coronary artery bypass graft with cardiopulmonary bypass. PloS One. 2013;8:e78643.

5. Pelosi P, D’andrea L, Vitale G, Pesenti A, Gattinoni L. Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am J Respir Crit Care Med. 1994;149:8−13.

6. Griese M, Wilnhammer C, Jansen S, Rinker C. Cardiopulmonary bypass reduces pulmonary surfactant activity in infants. J Thorac Cardiovasc Surg. 1999;118:237−44.

7. Corr L, McCarthy PA, Lavender JP, Hallidie-Smith KA. Bronchial compression by an enlarged left atrium in infants; a cause of hypovascularity of the left lung. Pediatr Radiol. 1988;18:459−63.

8. Malbouisson LM, Preteux F, Puybasset L, Grenier P, Coriat P, Rouby JJ. Validation of a software designed for computed tomographic (CT) measurement of lung water. Intensive Care Med. 2001;27:602−8.

9. Puybasset L, Cluzel P, Chao N, Slutsky AS, Coriat P, Rouby JJ. Group atCSAS. A computed tomography scan assessment of regional lung volume in acute lung injury. Am J Respir Crit Care Med. 1998;158:1644−55.

10. Mull RT. Mass estimates by computed tomography: physical density from CT numbers. Am J Roentgenol. 1984;143:1101−4.

11. Vieira SR, Puybasset L, Richecoeur J, et al. A lung computed tomographic assessment of positive end-expiratory pressureinduced lung overdistension. Am J Respir Crit Care Med. 1998;158:1571−7.

12. Hedenstierna G, Lundquist H, Lundh B, et al. Pulmonary densities during anaesthesia. An experimental study on lung morphology and gas exchange. Eur Respir J. 1989;2:528−35.

13. Vieira SR, Nieszkowska A, Lu Q, Elman M, Sartorius A, Rouby JJ. Low spatial resolution computed tomography underestimates lung overinflation resulting from positive pressure ventilation. Crit Care Med. 2005;33:741−9.

14. Nunn JF. Functional anatomy of the respiratory tract. Applied respiratory physiololy. Third ed. London: Butterworths. 1987: 3−22.

15. Thurlbeck WM. Lung growth and alveolar multiplication. Pathobiol Annu. 1975;5:1−34.

16. Wigglesworth JS, Desai R, Aber V. Quantitative aspects of perinatal lung growth. Early Hum Dev. 1987;15:203−12.

17. Thurlbeck WM. Postnatal human lung growth. Thorax. 1982;37:564−71.

18. Hogg JC. The effect of lung growth on the distribution of airways resistance. Ciba Found Study Group. 1971;38:47−62.

19. Martinez TM, Llapur CJ, Williams TH, et al. High-resolution computed tomography imaging of airway disease in infants with cystic fibrosis. Am J Respir Crit Care Med. 2005;172:1133−8.

20. Stocks J, Quanjer PH. Reference values for residual volume, functional residual capacity and total lung capacity. ATS Workshop on Lung Volume Measurements. Official Statement of The European Respiratory Society. Eur Respir J. 1995;8:492−506.

21. Bucci G, Cook CD. Studies of Respiratory Physiology in Children. Vi. Lung Diffusing Capacity, Diffusing Capacity of the Pulmonary Membrane and Pulmonary Capillary Blood Volume in Congenital Heart Disease. J Clin Invest. 1961;40:1431−41.

22. Choe KO, Cho BK, Choi BW, Park CI, Lee SK. Histologic changes of pulmonary arteries in congenital heart disease with left-toright shunt (part 1): correlated with preoperative pulmonary hemodynamics. Emphasizing the significance of pulmonary arterial concentration. Yonsei Med J. 2002;43:73−81.

23. McGowan Jr. FX, Ikegami M, del Nido PJ, et al. Cardiopulmonary bypass significantly reduces surfactant activity in children. J Thorac Cardiovasc Surg. 1993;106:968−77.

24. Malbouisson LM, Busch CJ, Puybasset L, Lu Q, Cluzel P, Rouby JJ. Role of the heart in the loss of aeration characterizing lower lobes in acute respiratory distress syndrome. CT Scan ARDS Study Group. Am J Respir Crit Care Med. 2000;161:2005−12.

25. Milic-Emili J. Static Distribution of Lung Volumes. Comprehensive Physiology. John Wiley & Sons, Inc.; 2011.

26. Chi Y, Wang Q, Yuan S, Zhao Y, He H, Long Y. Maintaining moderate versus lower PEEP after cardiac surgery: a propensityscored matched analysis. BMC Anesthesiol. 2024;24:55.

27. Devor RL, Bassi HK, Kang P, et al. Safety and Efficacy of Lung Recruitment Maneuvers. Southwest J Pulmonary Crit Care Sleep. 2020. https://doi.org/10.13175/swjpcc068-19 https:// www.swjpcc.com/critical-care/2020/1/10/safety-and-efficacy-of-lung-recruitment-maneuvers-in-pediatr.html.

28. Bancalari E, MJ Jesse, Gelband H, Garcia O. Lung mechanics in congenital heart disease with increased and decreased pulmonary blood flow. J Pediatrics. 1977;90:192−5.

29. Neumann P, Rothen HU, Berglund JE, Valtysson J, Magnusson A, Hedenstierna G. Positive end-expiratory pressure prevents atelectasis during general anaesthesia even in the presence of a high inspired oxygen concentration. Acta Anaesthesiol Scand. 1999;43:295−301.

30. Junqueira FM, Ferraz IS, Campos FJ, et al. The Impact of Increased PEEP on Hemodynamics, Respiratory Mechanics, and Oxygenation in Pediatric ARDS. Respir Care. 2024;69: 1409−16.


Submitted date:
12/16/2024

Accepted date:
03/16/2025

686bc75fa9539565de2d61d3 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections