Impact of anesthetic technique on troponin I levels in pediatric cardiac surgery: a randomized clinical trial
Impacto da técnica anestésica nos níveis de troponina I em cirurgia cardíaca pediátrica: um ensaio clínico randomizado
João Victor Galvão Barelli, David D. Araujo, Suely P. Zeferino, Gustavo M. Dantas, Filomena B. Galas
Abstract
Background
This study aimed to evaluate the effects of the inhalational anesthetic sevoflurane on postoperative myocardial injury and renal function in children under 2 years old with congenital heart disease (RACHS 1, 2, and 3) undergoing cardiac surgery with extracorporeal circulation.
Methods
A randomized clinical trial was conducted with 66 patients divided into two groups: one receiving sevoflurane and the other Total Intravenous Anesthesia (TIVA). The primary outcome was the serum troponin I levels within the first 48 hours postoperatively. Secondary outcomes included urine output and serum urea levels.
Results
The median troponin I levels at 48 hours were 10.5 ng.mL−1 (IQR: 8.2–12.7) in the sevoflurane group and 11.0 ng.mL−1 (IQR: 8.7–13.0) in the TIVA group (p = 0.336). The sevoflurane group showed higher urine output on the second postoperative day (median: 800 mL [IQR: 420–913] vs. 541 mL [IQR: 312–718], p = 0.034) and lower serum urea levels (median: 24 mg.dL−1 [IQR: 16–35] vs. 36 mg.dL−1 [IQR: 23–49], p = 0.030).
Conclusions
While sevoflurane did not significantly impact myocardial injury markers, it demonstrated potential renal protective effects in this patient population. Further research is necessary to confirm these findings across different pediatric age groups and surgical contexts.
Keywords
Resumo
Introdução
Este estudo teve como objetivo avaliar os efeitos do anestésico inalatório sevoflurano sobre a lesão miocárdica pós-operatória e a função renal em crianças menores de 2 anos com cardiopatia congênita (RACHS 1, 2 e 3) submetidas à cirurgia cardíaca com circulação extracorpórea.
Métodos
Trata-se de um ensaio clínico randomizado com 66 pacientes divididos em dois grupos: um recebendo sevoflurano e o outro Anestesia Total Intravenosa (TIVA). O desfecho primário foi o nível sérico de troponina I nas primeiras 48 horas após a cirurgia. Os desfechos secundários incluíram diurese e níveis séricos de ureia.
Resultados
A mediana dos níveis de troponina I em 48 horas foi de 10,5 ng·mL⁻¹ (IQR: 8,2–12,7) no grupo sevoflurano e de 11,0 ng·mL⁻¹ (IQR: 8,7–13,0) no grupo TIVA (p = 0,336). O grupo sevoflurano apresentou maior diurese no segundo dia pós-operatório (mediana: 800 mL [IQR: 420–913] vs. 541 mL [IQR: 312–718], p = 0,034) e menores níveis séricos de ureia (mediana: 24 mg·dL⁻¹ [IQR: 16–35] vs. 36 mg·dL⁻¹ [IQR: 23–49], p = 0,030).
Conclusão
Embora o sevoflurano não tenha impactado significativamente os marcadores de lesão miocárdica, demonstrou potencial efeito protetor renal nessa população pediátrica. Mais estudos são necessários para confirmar esses achados em diferentes faixas etárias e contextos cirúrgicos.
Palavras-chave
Referencias
1. Ming S, Xie Y, Du X, Huang H, et al. Effect of dexmedetomidine on perioperative hemodynamics and organ protection in children with congenital heart disease: A randomized controlled trial. Medicine (Baltimore). 2021;100:e23998.
2. Landoni G, Lopez-Delgado JC, Sartini C, Tama S, Zangrillo A. Halogenated Agents and Cardiovascular Surgery: Has Mortality Really Decreased? Curr Vasc Pharmacol. 2018;16:336−43.
3. Preckel B, Schlack W, Thamer V. Enflurane and Isoflurane, but Not Halothane, Protect Against Myocardial Reperfusion Injury after Cardioplegic Arrest with HTK Solution in the Isolated Rat Heart. Anesth Analg. 1998;87:1221−7.
4. Zhao J, Wang F, Zhang Y, et al. Sevoflurane Preconditioning Attenuates Myocardial Ischemia/Reperfusion Injury via Caveolin-3−Dependent Cyclooxygenase-2 Inhibition. Circulation. 2013;128(Suppl 1):S121−9. 11.
5. Hong L, Sun Y, An JZ, Wang C, Qiao SG. Sevoflurane Preconditioning Confers Delayed Cardioprotection by Upregulating AMPActivated Protein Kinase Levels to Restore Autophagic Flux in Ischemia-Reperfusion Rat Hearts. Med Sci Monit. 2020;26: e922176.
6. Skyschally A, Gent S, Amanakis G, Schulte C, Kleinbongard P, Heusch G. Across-Species Transfer of Protection by Remote Ischemic Preconditioning with Species-Specific Myocardial Signal Transduction by Reperfusion Injury Salvage Kinase and Survival Activating Factor Enhancement Pathways. Circ Res. 2015;117:279−88.
7. Slagsvold KH, Moreira JBN, Rognmo Ø, et al. Remote ischemic preconditioning preserves mitochondrial function and activates pro-survival protein kinase Akt in the left ventricle during cardiac surgery: A randomized trial. Int J Cardiol. 2014;177: 409−17.
8. Symons JA, Myles PS. Myocardial protection with volatile anaesthetic agents during coronary artery bypass surgery: a metaanalysis. Br J Anaesth. 2006;97:127−36.
9. Cardiac protection by volatile anaesthetics: a multicentre randomized controlled study in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass - PubMed [Internet]. [citado 11 de dezembro de 2024]. Disponível em: https://pubmed.ncbi.nlm.nih.gov/17156509/.
10. Bettex DA, Wanner PM, Bosshart M, et al. Role of sevoflurane in organ protection during cardiac surgery in children: a randomized controlled trial. Interact Cardiovasc Thorac Surg. 2015;20:157−65.
11. Russell IA, Miller Hance WC, et al. The Safety and Efficacy of Sevoflurane Anesthesia in Infants and Children with Congenital Heart Disease. Anesth Analg. 2001;92:1152−8.
12. Gottlieb EA, Andropoulos DB. Anesthesia for the patient with congenital heart disease presenting for noncardiac surgery. Curr Opin Anaesthesiol. 2013;26:318−26.
13. Relos RP, Hasinoff IK, Beilman GJ. Moderately elevated serum troponin concentrations are associated with increased morbidity and mortality rates in surgical intensive care unit patients. Crit Care Med. 2003;31:2598−603.
14. Steurer MP, Steurer MA, Baulig W, Piegeler T, Schlapfer M, Spahn € DR, et al. Late pharmacologic conditioning with volatile anesthetics after cardiac surgery. Crit Care. 2012;16:R191.
15. Xiong H yan, Liu Y, Shu D chao, et al. Effects of Sevoflurane Inhalation During Cardiopulmonary Bypass on Pediatric Patients: A Randomized Controlled Clinical Trial. ASAIO J. 2016;62(1):63−8.
16. Guerrero Orriach JL, Galan Ortega M, Ramirez Fernandez A, et al. Cardioprotective efficacy of sevoflurane vs. propofol during induction and/or maintenance in patients undergoing coronary artery revascularization surgery without pump: A randomized trial. Int J Cardiol. 2017;243:73−80.
17. Malhotra P, Mychaskiw G, Rai A. Desflurane versus opioid anesthesia for cardiac shunt procedures in infants with cyantoic congential heart disease. Anesthesiol Pain Med. 2013;3:191−7.
18. Singh P, Chauhan S, Jain G, Talwar S, Makhija N, Kiran U. Comparison of cardioprotective effects of volatile anesthetics in children undergoing ventricular septal defect closure. World J Pediatr Congenit Heart Surg. 2013;4:24−9.
19. Bettex DA, Wanner PM, Bosshart M, et al. Role of sevoflurane in organ protection during cardiac surgery in children: a randomized controlled trial. Interact Cardiovasc Thorac Surg. 2015;20: 157−65.
20. De Hert SG, Van der Linden PJ, Cromheecke S, et al. Cardioprotective properties of sevoflurane in patients undergoing coronary surgery with cardiopulmonary bypass are related to the modalities of its administration. Anesthesiology. 2004;101: 299−310.
21. Malagon I, Hogenbirk K, van Pelt J, Hazekamp MG, Bovill JG. Effect of three different anaesthetic agents on the postoperative production of cardiac troponin T in paediatric cardiac surgery. Br J Anaesth. 2005;94:805−9.
22. Boutron I, Altman DG, Moher D, Schulz KF, Ravaud P. CONSORT NPT Group. CONSORT Statement for Randomized Trials of Nonpharmacologic Treatments: A 2017 Update and a CONSORT Extension for Nonpharmacologic Trial Abstracts. Ann Intern Med. 2017;167:40−7.
23. Barelli JVG, Galas FRBG. Impacto da tecnica anest esica nos níveis sericos de troponina I de pacientes pedi atricos submeti- dos a corre c¸ ao cir ~ urgica de cardiopatias cong enitas: estudo ^ clínico randomizado. 2020 [citado 11 de dezembro de 2024]; Disponível em: https://repositorio.usp.br/item/003037480.
24. Central concepts for randomized controlled trials and other emerging trial designs - PubMed [Internet]. [citado 11 de dezembro de 2024]. Disponível em: https://pubmed.ncbi.nlm. nih.gov/36414358/.
25. Cardiac troponin I in the diagnosis of myocardial injury and infarction - PubMed [Internet]. [citado 11 de dezembro de 2024]. Disponível em: https://pubmed.ncbi.nlm.nih.gov/ 8646813/.
26. Franzen S, Semenas E, Taavo M, Ma rtensson J, Larsson A, Frithiof R. Renal function during sevoflurane or total intravenous propofol anaesthesia: a single-centre parallel randomised controlled study. Br J Anaesth. 2022;128:838−48. 27. Sondekoppam RV, Narsingani KH, Schimmel TA, McConnell BM, Buro K, Ozelsel TJP. The impact of sevo € flurane anesthesia on postoperative renal function: a systematic review and metaanalysis of randomized-controlled trials. Can J Anesth Can Anesth. 2020;67:1595−623.
28. DailyMed - ULTANE- sevoflurane liquid [Internet]. [citado 11 de dezembro de 2024]. Disponível em: https://dailymed.nlm.nih. gov/dailymed/drugInfo.cfm?setid=c9aa6489-5a36-44ed-9512- b996833d82f7.
29. Brown ML, Parker SE, Quinonez LG, Li Z, Sundt TM. Can the ~ impact of change of surgical teams in cardiovascular surgery be measured by operative mortality or morbidity? A propensity adjusted cohort comparison. Ann Surg. 2011;253:385−92.
30. Guinot PG, Ellouze O, Grosjean S, et al. Anaesthesia and ICU sedation with sevoflurane do not reduce myocardial injury in patients undergoing cardiac surgery: A randomized prospective study. Medicine (Baltimore). 2020;99:e23253.
Submitted date:
14/09/2024
Accepted date:
20/02/2025