Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1016/j.bjane.2025.844589
Brazilian Journal of Anesthesiology
Original Investigation

Evaluation of hypotension prediction index software in patients undergoing orthotopic liver transplantation: retrospective observational study

Avaliação do software de índice de predição de hipotensão em pacientes submetidos a transplante ortotópico de fígado: estudo observacional retrospectivo

Jacek B. Cywinski, Yufei Li, Lusine Israelyan, Roshni Sreedharan, Silvia Perez-Protto, Kamal Maheshwari

Downloads: 0
Views: 43

Abstract

Background

Extreme hemodynamic changes, especially intraoperative hypotension (IOH), are common and often prolonged during Liver Transplant (LT) surgery and during initial hours of recovery. Hypotension Prediction Index (HPI) software is one of the tools which can help in proactive hemodynamic management. The accuracy of the advanced hemodynamic parameters such as Cardiac Output (CO) and Systemic Vascular Resistance (SVR) obtained from HPI software and prediction performance of the HPI in LT surgery remains unknown.

Methods

This was a retrospective observational study conducted in a tertiary academic center with a large liver transplant program. We enrolled 23 adult LT patients who received both Pulmonary Artery Catheter (PAC) and HPI software monitoring. Primarily, we evaluated agreement between PAC and HPI software measured CO and SVR. A priori, we defined a relative difference of less than 20% between measurements as an adequate agreement for a pair of measurements and estimated the Lin's Concordance Correlation Coefficient and Bland-Altman Limits of Agreement (LOA). Clinically acceptable LOA was defined as ± 1 L.min-1 for CO and ± 200 dynes s.cm-5 for SVR. Secondary outcome was the ability of the HPI to predict future hypotension, defined as Mean Arterial Pressure (MAP) less than 65 mmHg lasting at least one minute. We estimated sensitivity, positive predictive value, and time from alert to hypotensive events for HPI software.

Results

Overall, 125 pairs of CO and 122 pairs of SVR records were obtained from 23 patients. Based on our predefined criteria, only 42% (95% CI 30%, 55%) of CO records and 53% (95% CI 28%, 72%) of SVR records from HPI software were considered to agree with those from PAC. Across all patients, there were a total of 1860 HPI alerts (HPI ≥ 85) and 642 hypotensive events (MAP < 65 mmHg). Out of the 642 hypotensive events, 618 events were predicted by HPI alert with sensitivity of 0.96 (95% CI: 0.95). Many times, the HPI value remained above alert level and was followed by multiple hypotensive events. Thus, to evaluate PPV and time to hypotension metric, we considered only the first HPI alert followed by a hypotensive event (“true alerts”). The “true alert” was the first alert when there were several alerts before a hypotension. There were 614 “true alerts” and the PPV for HPI was 0.33 (95% CI 0.31, 0.35). The median time from HPI alert to hypotension was 3.3 [Q1, Q3: 1, 9.3] mins.

Conclusion

There was poor agreement between the pulmonary artery catheter and HPI software calculated advanced hemodynamic parameters (CO and SVR), in the patients undergoing LT surgery. HPI software had high sensitivity but poor specificity for hypotension prediction, resulting in a high burden of false alarms.

Keywords

Cardiac output; Hypotension prediction index; Intraoperative hypotension; Liver transplantation; Systemic vascular resistance

Resumo

Introdução

Alterações hemodinâmicas extremas, especialmente hipotensão intraoperatória (IOH), são comuns e frequentemente prolongadas durante a cirurgia de transplante hepático (LT) e durante as primeiras horas de recuperação. O software Índice de Predição de Hipotensão (HPI) é uma das ferramentas que podem auxiliar no manejo hemodinâmico proativo. A precisão dos parâmetros hemodinâmicos avançados, como Débito Cardíaco (CO) e Resistência Vascular Sistêmica (SVR), obtidos pelo software HPI, e o desempenho da predição do HPI na cirurgia de LT permanecem desconhecidos.

Métodos

Este foi um estudo observacional retrospectivo conduzido em um centro acadêmico terciário com um grande programa de transplante de fígado. Recrutamos 23 pacientes adultos em LT que receberam Cateter de Artéria Pulmonar (PAC) e monitoramento do software HPI. Primeiramente, avaliamos a concordância entre o PAC e o software HPI medidos CO e SVR. A priori, definimos uma diferença relativa de menos de 20% entre as medições como uma concordância adequada para um par de medições e estimamos o Coeficiente de Correlação de Concordância de Lin e os Limites de Concordância (LOA) de Bland-Altman. LOA clinicamente aceitável foi definido como ± 1 L.min-1 para DC e ± 200 dinas s.cm-5 para SVR. O desfecho secundário foi a capacidade do HPI de prever hipotensão futura, definida como Pressão Arterial Média (MAP) menor que 65 mmHg com duração de pelo menos um minuto. Estimamos a sensibilidade, o valor preditivo positivo e o tempo entre o alerta e os eventos hipotensivos para o software HPI.

Resultados

No total, 125 pares de registros de CO e 122 pares de registros de SVR foram obtidos de 23 pacientes. Com base em nossos critérios predefinidos, apenas 42% (IC 95% 30%, 55%) dos registros de CO e 53% (IC 95% 28%, 72%) dos registros de SVR do software HPI foram considerados concordantes com os do PAC. Em todos os pacientes, houve um total de 1.860 alertas de HPI (HPI ≥ 85) e 642 eventos hipotensivos (MAP < 65 mmHg). Dos 642 eventos hipotensivos, 618 eventos foram previstos pelo alerta de HPI com sensibilidade de 0,96 (IC 95%: 0,95). Muitas vezes, o valor de HPI permaneceu acima do nível de alerta e foi seguido por múltiplos eventos hipotensivos. Assim, para avaliar a métrica PPV e tempo até a hipotensão, consideramos apenas o primeiro alerta de HPI seguido por um evento hipotensivo ("alertas verdadeiros"). O "alerta verdadeiro" foi o primeiro alerta quando houve vários alertas antes de uma hipotensão. Houve 614 "alertas verdadeiros" e o PPV para HPI foi de 0,33 (IC 95% 0,31, 0,35). A mediana do tempo entre o alerta de HPI e a hipotensão foi de 3,3 [Q1, Q3: 1, 9,3] minutos.

Conclusão

Houve baixa concordância entre o cateter de artéria pulmonar e os parâmetros hemodinâmicos avançados calculados pelo software HPI (CO e SVR) nos pacientes submetidos à cirurgia de transplante de fígado (LT). O software HPI apresentou alta sensibilidade, mas baixa especificidade para a previsão de hipotensão, resultando em uma alta carga de alarmes falsos.

Palavras-chave

Débito cardíaco; Índice de predição de hipotensão; Hipotensão intraoperatória; Transplante de fígado; Resistência vascular sistêmica

References

1. Sessler DI, Bloomstone JA, Aronson S, et al. Perioperative Quality Initiative consensus statement on intraoperative blood pressure, risk and outcomes for elective surgery. Br J Anaesth. 2019;122:563−74.

2. Salmasi V, Maheshwari K, Yang D, et al. Relationship between Intraoperative Hypotension, Defined by Either Reduction from Baseline or Absolute Thresholds, and Acute Kidney and Myocardial Injury after Noncardiac Surgery: A Retrospective Cohort Analysis. Anesthesiology. 2017;126:47−65.

3. Smischney NJ, Shaw AD, Stapelfeldt WH, et al. Postoperative hypotension in patients discharged to the intensive care unit after non-cardiac surgery is associated with adverse clinical outcomes. Crit Care. 2020;24:682.

4. Edwards Acumen IQ Sensor. Secondary Edwards Acumen IQ Sensor 2022. https://www.edwards.com/devices/hemodynamicmonitoring/acumen-iq-sensor.

5. Maheshwari K, Shimada T, Yang D, et al. Hypotension Prediction Index for Prevention of Hypotension during Moderate- to Highrisk Noncardiac Surgery. Anesthesiology. 2020;133:1214−22.

6. Hatib F, Jian Z, Buddi S, et al. Machine-learning Algorithm to Predict Hypotension Based on High-fidelity Arterial Pressure Waveform Analysis. Anesthesiology. 2018;129:663−74.

7. Davies SJ, Vistisen ST, Jian Z, Hatib F, Scheeren TWL. Ability of an Arterial Waveform Analysis-Derived Hypotension Prediction Index to Predict Future Hypotensive Events in Surgical Patients. Anesth Analg. 2020;130:352−9.

8. Schneck E, Schulte D, Habig L, et al. Hypotension Prediction Index based protocolized haemodynamic management reduces the incidence and duration of intraoperative hypotension in primary total hip arthroplasty: a single centre feasibility randomised blinded prospective interventional trial. J Clin Monit Comput. 2020;34:1149−58.

9. Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989;45(1):255−68. [published Online First: 1989/03/01].

10. Bland JM, Altman DG. Agreement between methods of measurement with multiple observations per individual. J Biopharm Stat. 2007;17:571−82.

11. Zou GY. Confidence interval estimation for the Bland-Altman limits of agreement with multiple observations per individual. Stat Methods Med Res. 2013;22:630−42.

12. Gregory A, Stapelfeldt WH, Khanna AK, et al. Intraoperative Hypotension Is Associated with Adverse Clinical Outcomes After Noncardiac Surgery. Anesth Analg. 2021;132:1654−65.

13. Joosten A, Lucidi V, Ickx B, et al. Intraoperative hypotension during liver transplant surgery is associated with postoperative acute kidney injury: a historical cohort study. BMC Anesthesiol. 2021;21:12.

14. Fernandez TMA, Schofield N, Krenn CG, et al. What is the optimal anesthetic monitoring regarding immediate and short-term outcomes after liver transplantation? - A systematic review of the literature and expert panel recommendations. Clin Transplant. 2022: e14643.

15. Biais M, Nouette-Gaulain K, Cottenceau V, et al. Cardiac output measurement in patients undergoing liver transplantation: pulmonary artery catheter versus uncalibrated arterial pressure waveform analysis. Anesth Analg. 2008;106:1480−6. table of contents.

16. Krejci V, Vannucci A, Abbas A, Chapman W, Kangrga IM. Comparison of calibrated and uncalibrated arterial pressure-based cardiac output monitors during orthotopic liver transplantation. Liver Transpl. 2010;16:773−82.

17. Costa MG, Chiarandini P, Scudeller L, et al. Uncalibrated continuous cardiac output measurement in liver transplant patients: LiDCOrapidTM system versus pulmonary artery catheter. J Cardiothorac Vasc Anesth. 2014;28:540−6.

18. Solares GJ, Garcia D, Monge Garcia MI, et al. Real-world outcomes of the hypotension prediction index in the management of intraoperative hypotension during non-cardiac surgery: a retrospective clinical study. J Clin Monit Comput. 2023;37:211−20.

19. Grundmann CD, Wischermann JM, Fassbender P, Bischoff P, Frey UH. Hemodynamic monitoring with Hypotension Prediction Index versus arterial waveform analysis alone and incidence of perioperative hypotension. Acta Anaesthesiol Scand. 2021;65:1404−12.

20. Maheshwari K, Pu X, Rivas E, et al. Association between intraoperative mean arterial pressure and postoperative complications is independent of cardiac index in patients undergoing noncardiac surgery. Br J Anaesth. 2021;127:e102−e04.


Submitted date:
11/11/2024

Accepted date:
01/12/2025

681b78b1a9539515ed59070a rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections