A comprehensive review of massive transfusion and major hemorrhage protocols: origins, core principles and practical implementation
Uma revisão abrangente dos protocolos de transfusão maciça e hemorragia grave: origens, princípios fundamentais e implementação prática
David Silveira Marinho, Denise Menezes Brunetta, Luciana Maria de Barros Carlos, Luany Elvira Mesquita Carvalho, Jéssica Silva Miranda
Abstract
Until the beginning of the century, bleeding management was similar in elective surgeries or exsanguination scenarios: clotting tests were used to guide blood product orders and, while awaiting these results, an aggressive resuscitation with crystalloids was recommended. The high mortality rate in severe hemorrhages managed with this strategy endorsed the need for a special resuscitation plan. As a result, modifications were recommended to develop a new clinical approach to these patients, called “Damage Control Resuscitation”. This strategy includes four principles: damage control surgery, minimization of crystalloids, permissive hypotension and hemostatic resuscitation. The latter involves the use of antifibrinolytics, correction of preconditions of hemostasis (calcium, pH and temperature) and the early and rapid restoration of intravascular volume with blood products. To enable timely availability and transfusion of blood products, specific actions in different hospital areas need to be synchronized, which are usually organized through Massive Transfusion Protocols or, as they have recently been rebranded, Major Hemorrhage Protocols (MHPs). Although these bundles of actions represent a paradigm change, essential aspects such as their historical evolution, theoretical foundations, terminology and operational elements have yet to be well explored. Considering the wide application range of these tools (emergency departments, interventional radiology, operating rooms and military fields), it is essential to integrate all professionals involved with severe hemorrhage scenarios in the implementation of the aforementioned protocols, from conception to execution and management. This review paper addresses MHP aspects relevant to anesthesiologists, transfusion services and other areas involved with the care of patients with severe bleeding.
Keywords
Resumo
Até o início do século, o manejo do sangramento era semelhante em cirurgias eletivas ou cenários de exsanguinação: testes de coagulação eram usados para orientar pedidos de hemoderivados e, enquanto aguardavam esses resultados, uma ressuscitação agressiva com cristaloides era recomendada. A alta taxa de mortalidade em hemorragias graves tratadas com essa estratégia endossou a necessidade de um plano especial de ressuscitação. Como resultado, modificações foram recomendadas para desenvolver uma nova abordagem clínica para esses pacientes, chamada de “Ressuscitação de Controle de Danos”. Essa estratégia inclui quatro princípios: cirurgia de controle de danos, minimização de cristaloides, hipotensão permissiva e ressuscitação hemostática. Esta última envolve o uso de antifibrinolíticos, correção de pré-condições de hemostasia (cálcio, pH e temperatura) e a restauração rápida e precoce do volume intravascular com hemoderivados. Para permitir a disponibilidade e transfusão oportunas de hemoderivados, ações específicas em diferentes áreas hospitalares precisam ser sincronizadas, que geralmente são organizadas por meio de Protocolos de Transfusão Massiva ou, como foram recentemente renomeados, Protocolos de Grandes Hemorragias (MHPs). Embora esses pacotes de ações representem uma mudança de paradigma, aspectos essenciais como sua evolução histórica, fundamentos teóricos, terminologia e elementos operacionais ainda precisam ser bem explorados. Considerando a ampla gama de aplicações dessas ferramentas (departamentos de emergência, radiologia intervencionista, salas de cirurgia e campos militares), é essencial integrar todos os profissionais envolvidos com cenários de hemorragia grave na implementação dos protocolos acima mencionados, desde a concepção até a execução e o gerenciamento. Este artigo de revisão aborda aspectos do MHP relevantes para anestesiologistas, serviços de transfusão e outras áreas envolvidas com o cuidado de pacientes com sangramento grave.
Palavras-chave
References
1. Eastridge BJ, Holcomb JB, Shackelford S. Outcomes of traumatic hemorrhagic shock and the epidemiology of preventable death from injury. Transfusion (Paris). 2019;59:1423−8.
2. James AH, Federspiel JJ, Ahmadzia HK. Disparities in obstetric hemorrhage outcomes. Res Pract Thromb Haemost. 2022;6: e12656.
3. Armand R, Hess JR. Treating coagulopathy in trauma patients. Transfus Med Rev. 2003;17:223−31.
4. Holcomb JB, Jenkins D, Rhee P, et al. Damage control resuscitation: directly addressing the early coagulopathy of trauma. J Trauma. 2007;62:307−10.
5. Como JJ, Dutton RP, Scalea TM, Edelman BB, Hess JR. Blood transfusion rates in the care of acute trauma. Transfusion (Paris). 2004;44:809−13.
6. Barbosa Neto JO, de Moraes MF, Nani RS, Rocha Filho JA, Carmona MJ. Hemostatic resuscitation in traumatic hemorrhagic shock: case report. Braz J Anesthesiol. 2013;63:99−102.
7. Almeida C, Freitas MJ, Brandao D, Assuncao JP. Use of bronchial blocker in emergent thoracotomy in presence of upper airway hemorrhage, and cervical spine fracture: a difficult decision. Braz J Anesthesiol. 2018;68:408−11.
8. Artz CP, Sako Y, Bronwell AW. Massive transfusion in the severely wounded; report of a patient receiving 23,350 c.c. of blood in the first twenty-four hours. Surgery. 1955;37(3):469 −72.
9. Ball CG. Damage control resuscitation: history, theory and technique. Can J Surg. 2014;57:55−60.
10. Shapiro MB, Jenkins DH, Schwab CW, Rotondo MF. Damage control: collective review. J Trauma. 2000;49:969−78.
11. Hess JR, Holcomb JB, Hoyt DB. Damage control resuscitation: the need for specific blood products to treat the coagulopathy of trauma. Transfusion (Paris). 2006;46:685−6.
12. Zimmerman LM, Howell KM. History of Blood Transfusion. Ann Med Hist. 1932;4:415−33.
13. Murdock AD, Berseus O, Hervig T, Strandenes G, Lunde TH. Whole blood: the future of traumatic hemorrhagic shock resuscitation. Shock. 2014;41:62−9.
14. Spinella PC. Warm fresh whole blood transfusion for severe hemorrhage: U.S. military and potential civilian applications. Crit Care Med. 2008;36(Suppl 7):S340−5.
15. Repine TB, Perkins JG, Kauvar DS, Blackborne L. The use of fresh whole blood in massive transfusion. J Trauma. 2006;60 (Suppl 6):S59−69.
16. Brasil. Ministerio da Sa ude. Secretaria de Aten c¸ ao~ a Sa ude. Departamento de Atenc¸ ao Especializada e Tem ~ atica. Guia para uso de hemocomponentes. 2. ed. Brasília (DF): Editora do Ministerio da Sa ude; 2015 .
17. Holcomb JB, McMullin NR, Pearse L, et al. Causes of death in U. S. Special Operations Forces in the global war on terrorism: 2001-2004. Ann Surg. 2007;245:986−91.
18. Martin M, Oh J, Currier H, et al. An analysis of in-hospital deaths at a modern combat support hospital. J Trauma. 2009;66(Suppl 4):S51−60.
19. Cantle PM, Cotton BA. Balanced Resuscitation in Trauma Management. Surg Clin North Am. 2017;97:999−1014.
20. Malone DL, Hess JR, Fingerhut A. Massive transfusion practices around the globe and a suggestion for a common massive transfusion protocol. J Trauma. 2006;60(Suppl 6):S91−6.
21. Holcomb JB, Hess JR. Early Massive Trauma Transfusion: State of the Art: Editors’ Introduction. J Trauma. 2006;60(6):S1−2.
22. Lucas CE. Resuscitation of the injured patient: the three phases of treatment. Surg Clin North Am. 1977;57:3−15.
23. Harrigan C, Lucas CE, Ledgerwood AM, Walz DA, Mammen EF. Serial changes in primary hemostasis after massive transfusion. Surgery. 1985;98:836−44.
24. Hewson JR, Neame PB, Kumar N, Ayrton A, Gregor P, Davis C, et al. Coagulopathy related to dilution and hypotension during massive transfusion. Crit Care Med. 1985;13:387−91.
25. Martin DJ, Lucas CE, Ledgerwood AM, Hoschner J, McGonigal MD, Grabow D. Fresh frozen plasma supplement to massive red blood cell transfusion. Ann Surg. 1985;202:505−11.
26. Biffl WL, Smith WR, Moore EE, et al. Evolution of a multidisciplinary clinical pathway for the management of unstable patients with pelvic fractures. Ann Surg. 2001;233:843 −50.
27. Wudel JH, Morris Jr. JA, Yates K, Wilson A, Bass SM. Massive transfusion: outcome in blunt trauma patients. J Trauma. 1991;31:1−7.
28. Faringer PD, Mullins RJ, Johnson RL, Trunkey DD. Blood component supplementation during massive transfusion of AS-1 red cells in trauma patients. J Trauma. 1993;34:481−5.
29. Goerlinger K, Kiss G, Dirkmann D, et al. ROTEM-based algorithm for management of acute haemorrhage and coagulation disorders in trauma patients: A-321 [abstract]. Eur J Anaesthesiol. 2006;23(Suppl 37):84−5.
30. The 7th Innsbruck Winter Symposium for Coagulation. Innsbruck, Austria. November 5-6, 2010. “Haemostasis in massive bleeding and trauma”. S1−24.
31. Schochl H, Nienaber U, Hofer G, et al. Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit Care. 2010;14:R55.
32. Zipperle J, Schmitt FCF, Schochl H. Point-of-care, goaldirected management of bleeding in trauma patients. Curr Opin Crit Care. 2023;29:702−12.
33. Kim M, Cho H. Damage control strategy in bleeding trauma patients. Acute Crit Care. 2020;35:237−41.
34. Rossaint R, Afshari A, Bouillon B, et al. The European guideline on management of major bleeding and coagulopathy following trauma: sixth edition. Crit Care. 2023;27:80.
35. ATLS: Advanced Trauma Life Support - Student Course Manual. 10th ed. Chicago, IL: American College of Surgeons; 2018. p. 391.
36. Safiejko K, Smereka J, Filipiak KJ, et al. Effectiveness and safety of hypotension fluid resuscitation in traumatic hemorrhagic shock: A systematic review and meta-analysis of randomized controlled trials. Cardiol J. 2022;29:463−71.
37. Stroda A, Thelen S, M’Pembele R, et al. Association between hypotension and myocardial injury in patients with severe trauma. Eur J Trauma Emerg Surg. 2023;49:217−25.
38. Perkins JG, Cap AP, Weiss BM, Reid TJ, Bolan CD. Massive transfusion and nonsurgical hemostatic agents. Crit Care Med. 2008;36(Suppl 7):S325−39.
39. Brohi K, Cohen MJ, Ganter MT, Matthay MA, Mackersie RC, Pittet JF. Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway? Ann Surg. 2007;245:812−8.
40. Shakur H, Roberts I, Bautista R, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376:23 −32.
41. Ageron FX, Shakur-Still H, Roberts I. Effects of tranexamic acid treatment in severely and non-severely injured trauma patients. Transfusion (Paris). 2022;62(Suppl 1). S151-S7. 42. Murao S, Nakata H, Roberts I, Yamakawa K. Effect of tranexamic acid on thrombotic events and seizures in bleeding patients: a systematic review and meta-analysis. Crit Care. 2021;25:380.
43. Ker K, Roberts I, Shakur H, Coats TJ. Antifibrinolytic drugs for acute traumatic injury. Cochrane Database Syst Rev. 2015;2015:CD004896.
44. Gutierrez G, Reines HD, Wulf-Gutierrez ME. Clinical review: hemorrhagic shock. Crit Care. 2004;8:373−81.
45. Chang R, Holcomb JB. Optimal Fluid Therapy for Traumatic Hemorrhagic Shock. Crit Care Clin. 2017;33:15−36.
46. Kornblith LZ, Howard BM, Cheung CK, et al. The whole is greater than the sum of its parts: hemostatic profiles of whole blood variants. J Trauma Acute Care Surg. 2014;77:818−27.
47. Cosgriff N, Moore EE, Sauaia A, Kenny-Moynihan M, Burch JM, Galloway B. Predicting life-threatening coagulopathy in the massively transfused trauma patient: hypothermia and acidoses revisited. J Trauma. 1997;42:857−61.
48. Cinat ME, Wallace WC, Nastanski F, et al. Improved survival following massive transfusion in patients who have undergone trauma. Arch Surg. 1999;134:964−8.
49. Vaslef SN, Knudsen NW, Neligan PJ, Sebastian MW. Massive transfusion exceeding 50 units of blood products in trauma patients. J Trauma. 2002;53:291−5.
50. Hirshberg A, Dugas M, Banez EI, Scott BG, Wall Jr. MJ, Mattox KL. Minimizing dilutional coagulopathy in exsanguinating hemorrhage: a computer simulation. J Trauma. 2003;54:454−63.
51. Ho AM, Dion PW, Cheng CA, et al. A mathematical model for fresh frozen plasma transfusion strategies during major trauma resuscitation with ongoing hemorrhage. Can J Surg. 2005;48:470−8.
52. Ho AM, Karmakar MK, Dion PW. Are we giving enough coagulation factors during major trauma resuscitation? Am J Surg. 2005;190:479−84.
53. Borgman MA, Spinella PC, Perkins JG, et al. The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital. J Trauma. 2007;63:805−13.
54. Holcomb JB, Wade CE, Michalek JE, et al. Increased plasma and platelet to red blood cell ratios improves outcome in 466 massively transfused civilian trauma patients. Ann Surg. 2008;248:447−58.
55. Llau JV, Aldecoa C, Guasch E, et al. Multidisciplinary consensus document on the management of massive haemorrhage. First update 2023 (document HEMOMAS-II). Med Intensiva (Engl Ed). 2023;47:454−67.
56. Wilson RF, Mammen E, Walt AJ. Eight years of experience with massive blood transfusions. J Trauma. 1971;11:275−85.
57. Sharpe JP, Weinberg JA, Magnotti LJ, Croce MA, Fabian TC. Toward a better definition of massive transfusion: focus on the interval of hemorrhage control. J Trauma Acute Care Surg. 2012;73:1553−7.
58. Rutledge R, Sheldon GF, Collins ML. Massive transfusion. Crit Care Clin. 1986;2:791−805.
59. Sawyer PR, Harrison CR. Massive transfusion in adults. Diagnoses, survival and blood bank support. Vox Sang. 1990;58:199 −203.
60. Kashuk JL, Moore EE, Johnson JL, et al. Postinjury life threatening coagulopathy: is 1:1 fresh frozen plasma:packed red blood cells the answer? J Trauma. 2008;65:261−70.
61. Moren AM, Hamptom D, Diggs B, et al. Recursive partitioning identifies greater than 4 U of packed red blood cells per hour as an improved massive transfusion definition. J Trauma Acute Care Surg. 2015;79:920−4.
62. Savage SA, Zarzaur BL, Croce MA, Fabian TC. Redefining massive transfusion when every second counts. J Trauma Acute Care Surg. 2013;74:396−400.
63. Wong HS, Curry NS, Davenport RA, Yu LM, Stanworth SJ. A Delphi study to establish consensus on a definition of major bleeding in adult trauma. Transfusion (Paris). 2020;60:3028−38.
64. British Committee for Standards in HStainsby D, MacLennan S, Thomas D, Isaac J, Hamilton PJ. Guidelines on the management of massive blood loss. Br J Haematol. 2006;135:634−41.
65. Callum JL, Nascimento B, Alam A. Massive haemorrhage protocol: what’s the best protocol? ISBT Sci Ser. 2016;11(S1):297 −306.
66. Estebaranz-Santamaria C, Palmar-Santos AM, Pedraz-Marcos A. Massive transfusion triggers in severe trauma: Scoping review. Rev Lat Am Enfermagem. 2018;26:e3102.
67. Gianola S, Castellini G, Biffi A, et al. Accuracy of risk tools to predict critical bleeding in major trauma: A systematic review with meta-analysis. J Trauma Acute Care Surg. 2022;92:1086 −96.
68. Shih AW, Al Khan S, Wang AY, et al. Systematic reviews of scores and predictors to trigger activation of massive transfusion protocols. J Trauma Acute Care Surg. 2019;87:717−29.
69. Cannon CM, Braxton CC, Kling-Smith M, Mahnken JD, Carlton E, Moncure M. Utility of the shock index in predicting mortality in traumatically injured patients. J Trauma. 2009;67:1426−30.
70. Nunez TC, Voskresensky IV, Dossett LA, Shinall R, Dutton WD, Cotton BA. Early prediction of massive transfusion in trauma: simple as ABC (assessment of blood consumption)? J Trauma. 2009;66:346−52.
71. Pommerening MJ, Goodman MD, Holcomb JB, et al. Clinical gestalt and the prediction of massive transfusion after trauma. Injury. 2015;46:807−13.
72. Meyer DE, Cotton BA, Fox EE, et al. A comparison of resuscitation intensity and critical administration threshold in predicting early mortality among bleeding patients: A multicenter validation in 680 major transfusion patients. J Trauma Acute Care Surg. 2018;85:691−6.
73. Rahbar E, Fox EE, del Junco DJ, et al. Early resuscitation intensity as a surrogate for bleeding severity and early mortality in the PROMMTT study. J Trauma Acute Care Surg. 2013;75(Suppl 1):S16−23.
74. Hunt BJ, Allard S, Keeling D, et al. A practical guideline for the haematological management of major haemorrhage. Br J Haematol. 2015;170:788−803.
75. Gayet-Ageron A, Prieto-Merino D, Ker K, et al. Effect of treatment delay on the effectiveness and safety of antifibrinolytics in acute severe haemorrhage: a meta-analysis of individual patient-level data from 40 138 bleeding patients. Lancet. 2018;391:125−32.
76. Holcomb JB, Tilley BC, Baraniuk S, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313:471−82.
77. Callum JL, Yeh CH, Petrosoniak A, et al. A regional massive hemorrhage protocol developed through a modified Delphi technique. CMAJ Open. 2019;7:E546−E61.
78. Stanworth SJ, Dowling K, Curry N, et al. Haematological management of major haemorrhage: a British Society for Haematology Guideline. Br J Haematol. 2022;198:654−67. 79. Callum JL, George RB, Karkouti K. How I manage major hemorrhage. Blood. 2024. https://doi.org/10.1182/ blood.2023022901. Online ahead of print.
80. Gruen RL, Jurkovich GJ, McIntyre LK, Foy HM, Maier RV. Patterns of errors contributing to trauma mortality: lessons learned from 2,594 deaths. Ann Surg. 2006;244:371−80.
81. Brasil. Portaria de consolidac¸ ao n° 5, de 28 de Setembro de ~ 2017. Ministerio da Sa ude. Brasília (DF): Di ario O ficial da Uniao; 2017. p. 120 ~ −90.
82. Andrews J, Josephson CD, Young P, Spinella PC, Yazer MH. Weighing the risk of hemolytic disease of the newborn versus the benefits of using of RhD-positive blood products in trauma. Transfusion (Paris). 2023;63. Suppl 3:S4-S9.
83. Hsu Y, Haas T, Cushing M. Massive transfusion protocols: current best practice. Int J Clin Transfus Med. 2016;4:15−27.
84. Dente CJ, Shaz BH, Nicholas JM, et al. Improvements in early mortality and coagulopathy are sustained better in patients with blunt trauma after institution of a massive transfusion protocol in a civilian level I trauma center. J Trauma. 2009;66:1616−24.
85. Riskin DJ, Tsai TC, Riskin L, et al. Massive transfusion protocols: the role of aggressive resuscitation versus product ratio in mortality reduction. J Am Coll Surg. 2009;209:198−205.
86. Nunez TC, Young PP, Holcomb JB, Cotton BA. Creation, implementation, and maturation of a massive transfusion protocol for the exsanguinating trauma patient. J Trauma. 2010;68:1498−505.
87. Cardigan R, Green L. Thawed and liquid plasma−what do we know? Vox Sang. 2015;109:1−10.
88. Yazer MH, Diaz-Valdes JR, Triulzi DJ, Cap AP. Wider perspectives: It’s a changing world-The use of ABO-incompatible plasma for resuscitating massively bleeding patients. Br J Haematol. 2023;200:291−6.
89. Agaronov M, DiBattista A, Christenson E, Miller-Murphy R, Strauss D, Shaz BH. Perception of low-titer group A plasma and potential barriers to using this product: A blood center’s experience serving community and academic hospitals. Transfus Apher Sci. 2016;55:141−5.
90. Cohn CS, Delaney M, Johnson ST, Katz LM. Technical Manual (AABB). 20th ed. Bethesda, MD: American Association of Blood Banks; 2020. p. 816.
91. Collins PW, Solomon C, Sutor K, et al. Theoretical modelling of fibrinogen supplementation with therapeutic plasma, cryoprecipitate, or fibrinogen concentrate. Br J Anaesth. 2014;113 (4):585−95.
92. Green L, Daru J, Gonzalez Carreras FJ, et al. Early cryoprecipitate transfusion versus standard care in severe postpartum haemorrhage: a pilot cluster-randomised trial. Anaesthesia. 2022;77:175−84.
93. Haas T, Spielmann N, Restin T, et al. Higher fibrinogen concentrations for reduction of transfusion requirements during major paediatric surgery: A prospective randomised controlled trial. Br J Anaesth. 2015;115:234−43.
94. Hinton JV, Xing Z, Fletcher CM, et al. Association of Perioperative Cryoprecipitate Transfusion and Mortality After Cardiac Surgery. Ann Thorac Surg. 2023;116:401−11.
95. Whyte CS, Rastogi A, Ferguson E, Donnarumma M, Mutch NJ. The Efficacy of Fibrinogen Concentrates in Relation to Cryoprecipitate in Restoring Clot Integrity and Stability against Lysis. Int J Mol Sci. 2022;23:2944.
96. Curry N, Foley C, Wong H, et al. Early fibrinogen concentrate therapy for major haemorrhage in trauma (E-FIT 1): results from a UK multi-centre, randomised, double blind, placebocontrolled pilot trial. Crit Care. 2018;22:164.
97. Mok G, Hoang R, Khan MW, et al. Freeze-dried plasma for major trauma - Systematic review and meta-analysis. J Trauma Acute Care Surg. 2021;90:589−602.
98. Rowell SE, Meier EN, McKnight B, et al. Effect of Out-of-Hospital Tranexamic Acid vs Placebo on 6-Month Functional Neurologic Outcomes in Patients With Moderate or Severe Traumatic Brain Injury. JAMA. 2020;324:961−74.
99. Guyette FX, Brown JB, Zenati MS, et al. Tranexamic Acid During Prehospital Transport in Patients at Risk for Hemorrhage After Injury: A Double-blind, Placebo-Controlled, Randomized Clinical Trial. JAMA Surgery. 2021;156:11−20.
100. Stitt G, Spinella PC, Bochicchio GV, Roberts I, Downes KJ, Zuppa AF. Population pharmacokinetic modelling and simulation of tranexamic acid in adult trauma patients. Br J Clin Pharmacol. 2024;90:1932−41.
Submitted date:
11/27/2023
Accepted date:
12/12/2024