Oscillatory ventilation enhances oxygenation and reduces inflammation in an animal model of acute respiratory distress syndrome: an experimental study
Ventilação oscilatória melhora a oxigenação e reduz a inflamação em um modelo animal de síndrome do desconforto respiratório agudo: um estudo experimental
Luiz Alberto Forgiarini Junior, Luiz Felipe Forgiarini Arthur de Oliveira Paludo, Rodrigo Mariano, Mikael Marcelo de Moraes, Elaine Aparecida Felix, Cristiano Feijó Andrade
Abstract
Background
This study aims to compare the use of variable mechanical ventilation with conventional mechanical ventilation in a porcine model of ARDS induced by oleic acid.
Methods
The animals were divided into two groups (n = 6), Conventional Ventilation (CO) and variable ventilation with Bi-Oscillatory PEEP (BiPEEP). ARDS was induced using intravenous oleic acid (0.15 mL.kg-1). After, the animals were evaluated during 180 minutes and, measurements were taken every 30 minutes until the end of the observation period. The animals in the CO group were then ventilated under controlled pressure (Tidal Volume target at 6 mL.kg-1) and 5cmH2OPEEP. Variable ventilation was characterized by the oscillation of PEEP from 5 to 10 cm H2O every 4 respiratory cycles. Ventilatory, hemodynamic parameters, oxidative stress, antioxidant enzymes, Interleukin 8 (IL8) and 17-a (IL17a) were evaluated. Histological samples were collected from the upper and the lower portion of the left lungs and analyzed separately.
Results
BiPEEP improved lung compliance and PaO2 in comparison to control (p < 0.05). The levels of oxidative stress and antioxidant enzymes showed no significant difference. There was no difference in IL17a between groups. IL8 was significantly increased in the lung base of CO group in relation to BiPEEP group and it was reduced in the apex of BiPEEP group in comparsion to COgroup. The BiPEEP group showed less changes in histopathological patterns.
Conclusions
Variable ventilation with bi-oscillatory level of PEEP demonstrated a potential ventilatory strategy for lung protection in an experimental model of ARDS.
Keywords
Resumo
Introdução
Este estudo tem como objetivo comparar o uso da ventilação mecânica variável com a ventilação mecânica convencional em um modelo suíno de SDRA induzida por ácido oleico.
Métodos
Os animais foram divididos em dois grupos (n = 6), Ventilação Convencional (CO) e Ventilação Variável com PEEP Bi-Oscilatória (BiPEEP). A SDRA foi induzida usando ácido oleico intravenoso (0,15 mL.kg−1). Em seguida, os animais foram avaliados durante 180 minutos e as medidas foram feitas a cada 30 minutos até o final do período de observação. Os animais do grupo CO foram então ventilados sob pressão controlada (Volume Corrente alvo em 6 mL.kg−1) e PEEP de 5 cm H2O. A ventilação variável foi caracterizada pela oscilação da PEEP de 5 a 10 cm H2O a cada 4 ciclos respiratórios. Parâmetros ventilatórios, hemodinâmicos, estresse oxidativo, enzimas antioxidantes, Interleucina 8 (IL8) e 17-a (IL17a) foram avaliados. Amostras histológicas foram coletadas da porção superior e inferior dos pulmões esquerdos e analisadas separadamente.
Resultados
A BiPEEP melhorou a complacência pulmonar e a PaO2 em comparação ao controle (p < 0,05). Os níveis de estresse oxidativo e enzimas antioxidantes não apresentaram diferença significativa. Não houve diferença na IL17a entre os grupos. A IL8 aumentou significativamente na base pulmonar do grupo CO em relação ao grupo BiPEEP e foi reduzida no ápice do grupo BiPEEP em comparação ao grupo CO. O grupo BiPEEP apresentou menos alterações nos padrões histopatológicos.
Conclusions
A ventilação variável com nível bi-oscilatório de PEEP demonstrou uma estratégia ventilatória potencial para proteção pulmonar em um modelo experimental de SDRA.
Palavras-chave
References
1. Acute Respiratory Distress Syndrome: The Berlin Definition. The ARDS Definition Task Force. JAMA. 2012;307:2526−33.
2. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301−8.
3. Lachmann B. Open up the lung and keep the lung open. Intensive Care Med. 1992;18:319−21.
4. Thammanomai A, Hueser LE, Majumdar A, Bartolak-Suki E, Suki B. Design of a new variable-ventilation method optimized for lung recruitment in mice. J Appl Physiol. 2008;104:1329−40.
5. Villagra A, Ochagavía A, Vatua S, et al. Recruitment maneuvers during lung protective ventilation in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2002;65:165−70.
6. Amato MB, Barbas CS, Medeiros DM, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl Med. 1998;338:347−54.
7. Tobin MJ, Mador MJ, Guenther SM, Lodato RF, Sackner MA. Variability of resting respiratory drive and timing in healthy subjects. J Appl Physiol. 1988;65:309−17.
8. Suki B, Alencar AM, Sujeer MK, et al. Life-support system benefits from noise. Nature. 1998;393:127−8.
9. Gama de Abreu M, Spieth PM, Pelosi P, et al. Noisy pressure support ventilation: A pilot study on a new assisted ventilation mode in experimental lung injury. Crit Care Med. 2008;36:818−27.
10. Lefevre GR, Kowalski SE, Girling LC, Thiessen DB, Mutch AC. Improved arterial oxygenation after oleic acid lung injury in the pig using a computer-controlelled mechanical ventilation. Am J Respir Crit Care Med. 1996;154:1567−72.
11. Arold SP, Mora R, Lutchen KR, Ingenito EP, Suki B. Variable tidal volume ventilation improves lung mechanics and gas exchange in a rodent model of acute lung injury. Am J Respir Crit Care Med. 2002;165:366−71.
12. Regli A, Hockings LE, Musk GC, et al. Commonly applied positive end-expiratory pressures do not prevent functional residual capacity decline in the setting of intra- abdominal hypertension: a pig model. Crit Care. 2010;14:R128.
13. Julien M, Hoeffel JM, Flick MR. Oleic acid lung injury in sheep. J Appl Physiol. 1986;60:433−40.
14. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302−10.
15. Reiss LK, Uhlig U, Uhlig S. Models and mechanisms of acute lung injury caused by direct insults. Eur J Cell Biol. 2012;91:590−601.
16. Araujo LFL, Holand ARR, Paludo AO, Silva EF, Forgiarini LA, Forgiarini LF. Effect of the systemic administration of methylprednisolone on the lungs of brain-dead donor rats undergoing pulmonary transplantation. Clinics. 2014;69:128−33.
17. Fontela PC, Prestes RB, Forgiarini Jr LA, Friedman G. Variable mechanical ventilation. Rev Bras Ter Intensiva. 2017;29:77−86.
18. Schuster DP. ARDS: clinical lessons from the oleic acid model of acute lung injury. Am J Respir Crit Care Med. 1994;149:245−60.
19. Boker A, Haberman CJ, Girling L, et al. Variable ventilation improves perioperative lung function in patients undergoing abdominal aortic aneurysmectomy. Anesthesiology. 2004;100: 608−16.
20. Spieth PM, Guldner A, Huhle R, et al. Short- term effects of € noisy pressure support ventilation in patients with acute hypoxemic respiratory failure. Crit Care. 2013;17:R261.
21. Wang R, Chen J, Wu G. Variable lung protective mechanical ventilation decreases incidence of postoperative delirium and cognitive dysfunction during open abdominal surgery. Int J Clin Exp Med. 2015;8:21208−14.
22. Boker A, Graham MR, Walley KR, et al. Improved arterial oxygenation with biologically variable or fractal ventilation using low tidal volumes in a porcine model of acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002;165:456−62.
23. Samary CS, Moraes L, Santos CL, et al. Lung Functional and Biologic Responses to Variable Ventilation in Experimental Pulmonary and Extrapulmonary Acute Respiratory Distress Syndrome. Crit Care Med. 2016;44:e553−62.
24. Lefevre GR, Kowalski SE, Girling LG, Thiessen DB, Mutch WA. Improved arterial oxygenation after oleic acid lung injury in the pig using a computer-controlled mechanical ventilator. Am J Respir Crit Care Med. 1996;154:1567−72.
25. Mutch WA, Harms S, RuthGraham M, Kowalski SE, Girling LG, Lefevre GR. Biologically variable or naturally noisy mechanical ventilation recruits atelectatic lung. Am J Respir Crit Care Med. 2000;162:319−23.
26. Nam AJ, Brower RG, Fessler HE, Simon BA. Biologic variability in mechanical ventilation rate and tidal volume does not improve oxygenation or lung mechanics in canine oleic acid lung injury. Am J Respir Crit Care Med. 2000;161:1797−804.
27. Ma B, Suki B, Bates JH. Effects of recruitment/derecruitment dynamics on the efficacy of variable ventilation. J Appl Physiol. 2011;110:1319−26.
28. Arold SP, Suki B, Alencar AM, Lutchen KR, Ingenito EP. Variable ventilation induces endogenous surfactant release in normal guinea pigs. Am J Physiol Lung Cell Mol Physiol. 2003;285:L370−5.
Submitted date:
02/15/2024
Accepted date:
11/09/2024