Prevalence and predictors of confirmed infection in patients receiving empiric antimicrobials in the intensive care unit: a retrospective cohort study
Prevalência e preditores de infecção confirmada em pacientes recebendo antimicrobianos empíricos na unidade de terapia intensiva: um estudo de coorte retrospectivo
Luis Carlos Maia Cardozo Junior; Larissa Bianchini; Jakeline Neves Giovanetti; Luiz Marcelo Almeida de Araujo; Yuri de Albuquerque Pessoa dos Santos; Bruno Adler Maccagnan Pinheiro Besen; Marcelo Park
Abstract
Background
Infection diagnosis in Intensive Care Units (ICUs) is a challenge given the spectrum of conditions that present with systemic inflammation, the illness severity and the delay and
imprecision of existing diagnostic methods. We hence sought to analyze the prevalence and predictors of confirmed infection after empirical antimicrobials during ICU stay.
Methods
Retrospective cohort of prospectively collected ICU data in an academic tertiary hospital in Sao Paulo, Brazil. We included all adult patients given a new empirical antimicrobial during their ICU stay. We excluded patients using prophylactic or microbiologically guided antimicrobials. Primary outcome was infection status, defined as confirmed, probable, possible, or discarded. In a multivariable analysis, we explored variables associated with confirmed infection.
Results
Out of After screening 1721 patients admitted to the ICU from November 2017 to November 2022, we identified 398 new antimicrobial prescriptions in 341 patients. After exclusions, 243 antimicrobial prescriptions for 206 patients were included. Infection was classified as confirmed in 61 (25.1%) prescriptions, probable in 39 (16.0%), possible in 103 (42.4%), and discarded in 40 (16.5%). The only factor associated with infection was deltaSOFA (OR = 1.18, 95% CI 1.02 to 1.36, p = 0.022).
Conclusions
Suspected infection in the ICU is frequently not confirmed. Clinicians should be aware of the need to avoid premature closure and revise diagnosis after microbiological results.
Development and implementation of new tools for faster infection diagnosis and guiding of antimicrobial prescription should be a research priority.
Keywords
Resumo
Introdução
O diagnóstico de infecção em Unidades de Terapia Intensiva (UTIs) é um desafio, dado o espectro de condições que se apresentam com inflamação sistêmica, a gravidade da doença e o atraso e imprecisão dos métodos diagnósticos existentes. Portanto, buscamos analisar a prevalência e os preditores de infecção confirmada após antimicrobianos empíricos durante a internação na UTI.
Métodos
Coorte retrospectiva de dados coletados prospectivamente na UTI em um hospital terciário acadêmico em São Paulo, Brasil. Incluímos todos os pacientes adultos que receberam um novo antimicrobiano empírico durante sua internação na UTI. Excluímos pacientes em uso de antimicrobianos profiláticos ou guiados microbiologicamente. O desfecho primário foi o estado da infecção, definido como confirmado, provável, possível ou descartado. Em uma análise multivariável, exploramos variáveis associadas à infecção confirmada.
Resultados
Após a triagem de 1.721 pacientes admitidos na UTI de novembro de 2017 a novembro de 2022, identificamos 398 novas prescrições de antimicrobianos em 341 pacientes. Após as exclusões, 243 prescrições de antimicrobianos para 206 pacientes foram incluídas. A infecção foi classificada como confirmada em 61 (25,1%) prescrições, provável em 39 (16,0%), possível em 103 (42,4%) e descartada em 40 (16,5%). O único fator associado à infecção foi o deltaSOFA (OR = 1,18, IC 95% 1,02 a 1,36, p = 0,022).
Conclusão
A suspeita de infecção na UTI frequentemente não é confirmada. Os clínicos devem estar cientes da necessidade de evitar o fechamento prematuro e revisar o diagnóstico após os resultados microbiológicos. O desenvolvimento e a implementação de novas ferramentas para diagnóstico mais rápido de infecções e orientação da prescrição antimicrobiana devem ser uma prioridade de pesquisa.
Palavras-chave
References
1. World Health Organization. WHO. https://www.who.int/newsroom/fact-sheets/detail/sepsis. 2020. Sepsis.
2. da Fonseca Pestana Ribeiro JM, Park M. Less empiric broadspectrum antibiotics is more in the ICU. Intensive Care Med. 2020;46:783−6.
3. Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021 Nov 2;47 (11):1181−247.
4. Westphal GA, Pereira AB, Fachin SM, et al. Characteristics and outcomes of patients with community-acquired and hospitalacquired sepsis. Rev Bras Ter Intensiva. 2019;31(1).
5. Denny KJ, De Wale J, Laupland KB, Harris PNA, Lipman J. When not to start antibiotics: avoiding antibiotic overuse in the intensive care unit. Clinical Microbiology and Infection. 2020 Jan;26 (1):35−40.
6. Chatterjee A, Modarai M, Naylor NR, Boyd SE, Atun R, Barlow J, et al. Quantifying drivers of antibiotic resistance in humans: a systematic review. Lancet Infect Dis. 2018 Dec;18 (12):e368−78.
7. Kalil AC, Timsit JF. Less is more: critically ill status is not a carte blanche for unlimited antibiotic use. Intensive Care Med. 2020;46:2075−8.
8. Rhee C, Kadri SS, Dekker JP, et al. Prevalence of AntibioticResistant Pathogens in Culture-Proven Sepsis and Outcomes Associated with Inadequate and Broad-Spectrum Empiric Antibiotic Use. JAMA Netw Open. 2020;3:e202899.
9. Hooper GA, Klippel CJ, McLean SR, et al. Concordance Between Initial Presumptive and Final Adjudicated Diagnoses of Infection Among Patients Meeting Sepsis-3 Criteria in the Emergency Department. Clinical Infectious Diseases. 2023;76:2047−55.
10. Klein Klouwenberg PMC, Cremer OL, van Vught LA, et al. Likelihood of infection in patients with presumed sepsis at the time of intensive care unit admission: a cohort study. Crit Care. 2015;19:319.
11. von Elm E, DG Altman, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. Strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ. 2007 Oct 20;335 (7624):806−8.
12. Giovanetti JN, Libera PH Della, da Silva MLF, et al. Eleven years impact of a stepwise educational program on healthcare associated infections and antibiotics consumption in an intensive care unit of a tertiary hospital in Brazil. J Crit Care. 2024;82:154783.
13. Moreno RP, Metnitz PGH, Almeida E, et al. SAPS 3 ‒ From evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality at ICU admission. Intensive Care Med. 2005;31:1345−55.
14. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J Chronic Dis. 1987;40:373−83.
15. Oken MM, Creech RH, Tormey DC, et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol. 1982;5:649−55.
16. Vincent JL, Moreno R, Takala J, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/ failure. Intensive Care Med. 1996;22:707−10.
17. Tabah A, Buetti N, Staiquly Q, et al. Epidemiology and outcomes of hospital-acquired bloodstream infections in intensive care unit patients: the EUROBACT-2 international cohort study. Intensive Care Med. 2023;49:178−90.
18. R Foundation for Statistical Computing. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, Vienna, Austria; 2022. p. 2022.
19. Pandolfo AM, Horne R, Jani Y, et al. Understanding decisions about antibiotic prescribing in ICU: an application of the Necessity Concerns Framework. BMJ Qual Saf. 2022;31:199−210.
20. Levin PD, Idrees S, Sprung CL, et al. Antimicrobial use in the ICU: Indications and accuracy ‒ an observational trial. J Hosp Med. 2012;7:672−8.
21. Klompas M, Rhee C, Singer M. The Importance of Shifting Sepsis Quality Measures from Processes to Outcomes. JAMA. 2023;329:535.
22. Kalil AC, Gilbert DN, Winslow DL, Masur H, Klompas M. Infectious Diseases Society of America (IDSA) POSITION STATEMENT: Why IDSA Did Not Endorse the Surviving Sepsis Campaign Guidelines. Clinical Infectious Diseases. 2018;66:1631−5.
23. Bassi E, Tomazini BM, Carneiro BV, et al. Impact of withholding early antibiotic therapy in nonseptic surgical patients with suspected nosocomial infection: a retrospective cohort analysis. Braz J Anesthesiol. 2024;74:744431.
24. Le Terrier C, Vinetti M, Bonjean P, et al. Impact of a restrictive antibiotic policy on the acquisition of extended-spectrum betalactamase-producing Enterobacteriaceae in an endemic region: a before-and-after, propensity-matched cohort study in a Caribbean intensive care unit. Crit Care. 2021;25:261.
25. Razazi K, Delamaire F, Fihman V, Boujelben MA, Mongardon N, Gendreau S, et al. Potential of Multiplex Polymerase Chain Reaction Performed on Protected Telescope Catheter Samples for Early Adaptation of Antimicrobial Therapy in ARDS Patients. J Clin Med. 2022;11:4366.
26. Mokrani D, Chommeloux J, Pineton de Chambrun M, Hekimian G, Luyt CE. Antibiotic stewardship in the ICU: time to shift into overdrive. Ann Intensive Care. 2023;13:39.
27. Wang D, Li J, Sun Y, et al. A Machine Learning Model for Accurate Prediction of Sepsis in ICU Patients. Front Public Health. 2021;9:754348.
28. Mao Q, Jay M, Hoffman JL, et al. Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU. BMJ Open. 2018;8: e017833.
29. Kim T, Tae Y, Yeo HJ, et al. Development and Validation of DeepLearning-Based Sepsis and Septic Shock Early Prediction System (DeepSEPS) Using Real-World ICU Data. J Clin Med. 2023;12:7156.
Submitted date:
03/21/2024
Accepted date:
10/09/2024