Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1016/j.bjane.2024.844545
Brazilian Journal of Anesthesiology
Original Investigation

Use of the cardiac power index to predict fluid responsiveness in the prone position: a proof-of-concept study

Uso do índice de potência cardíaca para prever a responsividade a fluidos na posição prona: um estudo de prova de conceito

Ji Young Min, Joon Pyo Jeon, Mee Young Chung, Chang Jae Kim

Downloads: 0
Views: 234

Abstract

Background

The primary aim of this proof-of-concept study was to investigate whether the Cardiac Power Index (CPI) could be a novel alternative method to assess fluid responsiveness in the prone position.

Methods

Patients undergoing scheduled elective lumbar spine surgery in the prone position under general anesthesia were enrolled in the criteria of patients aged 19–75 years with American Society of Anesthesiologists (ASA) physical status I–II. The hemodynamic variables were evaluated before and after changes in posture after administering a colloid bolus (5 mL.kg−1) in the prone position. Fluid responsiveness was defined as an increase in the Stroke Volume Index (SVI) ≥ 10%.

Results

A total of 28 patients were enrolled. In responders, the CPI (median [1/4Q–3/4Q]) decreased to 0.34 [0.28–0.39] W.m−2 (p = 0.035) after the prone position. After following fluid loading, CPI increased to 0.48 [0.37–0.52] W.m−2 (p < 0.008), and decreased SVI (median [1/4Q–3/4Q]) after prone increased from 26.0 [24.5–28.0] mL.m−2 to 33.0 [31.0–37.5] mL.m−2 (p = 0.014). Among non-responders, CPI decreased to 0.43 [0.28–0.53] W.m−2 (p = 0.011), and SVI decreased to 29.0 [23.5–34.8] mL.m−2 (p < 0.009). CPI exhibited predictive capabilities for fluid responsiveness as a receiver operating characteristic curve of 0.78 [95% Confidence Interval, 0.60–0.95; p = 0.025].

Conclusion

This study suggests the potential of CPI as an alternative method to existing preload indices in assessing fluid responsiveness in clinical scenarios, offering potential benefits for responders and non-responders.

Keywords

Cardiac output Fluid therapy Intraoperative monitoring Prone position

Resumo

Introdução

O objetivo principal deste estudo de prova de conceito foi investigar se o Índice de Potência Cardíaca (IPC) poderia ser um novo método alternativo para avaliar a responsividade a fluidos na posição prona.

Métodos

Pacientes submetidos a cirurgia eletiva programada da coluna lombar na posição prona sob anestesia geral foram inscritos nos critérios de pacientes com idade entre 19 e 75 anos com estado físico I–II da Sociedade Americana de Anestesiologistas (ASA). As variáveis ​​hemodinâmicas foram avaliadas antes e depois de mudanças na postura após a administração de um bolus coloidal (5 mL.kg−1) na posição prona. A responsividade a fluidos foi definida como um aumento no Índice de Volume Sistólico (IVS) ≥ 10%.

Resultados

Um total de 28 pacientes foram inscritos. Nos respondedores, o IPC (mediana [1/4Q–3/4Q]) diminuiu para 0,34 [0,28–0,39] W.m−2 (p = 0,035) após a posição prona. Após a carga de fluidos, o IPC aumentou para 0,48 [0,37–0,52] W.m−2 (p < 0,008) e o IVS diminuiu (mediana [1/4Q–3/4Q]) após a posição prona aumentou de 26,0 [24,5–28,0] mL.m−2 para 33,0 [31,0–37,5] mL.m−2 (p = 0,014). Entre os não respondedores, o IPC diminuiu para 0,43 [0,28–0,53] W.m−2 (p = 0,011) e o IVS diminuiu para 29,0 [23,5–34,8] mL.m−2 (p < 0,009). O IPC exibiu capacidades preditivas para responsividade a fluidos como uma curva característica de operação do receptor de 0,78 [Intervalo de confiança de 95%, 0,60–0,95; p = 0,025]. 

Conclusão

Este estudo sugere o potencial do CPI como um método alternativo aos índices de pré-carga existentes na avaliação da responsividade a fluidos em cenários clínicos, oferecendo benefícios potenciais para respondedores e não respondedores.

Palavras-chave

Débito cardíaco; Fluidoterapia; Monitorização intraoperatória; Posição prona

References

1. Messmer AS, Zingg C, Muller M, et al. Fluid overload and mortal- € ity in adult critical care patients ‒ a systematic review and meta-analysis of observational studies. Crit Care Med. 2020;48:1862−70.

2. Marik PE, Monnet X, Teboul J-L. Hemodynamic parameters to guide fluid therapy. Ann Intensive Care. 2011;1:1−9.

3. Osman D, Ridel C, Ray P, et al. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med. 2007;35:64−8.

4. Enev R, Krastev P, Abedinov F. Prediction of fluid responsiveness: a review. Biotechnology Biotechnological Equipment. 2021;35:1147−55.

5. Mesquida J, Kim HK, Pinsky MR. Effect of tidal volume, intrathoracic pressure, and cardiac contractility on variations in pulse pressure, stroke volume, and intrathoracic blood volume. Intensive Care Med. 2011;37:1672−9.

6. Berger K, Francony G, Bouzat P, et al. Prone position affects stroke volume variation performance in predicting fluid responsiveness in neurosurgical patients. Minerva Anestesiol. 2014;81:628−35.

7. Abdelhamid B, Matta M, Rady A, et al. Conventional fluid management versus plethysmographic variability index-based goal directed fluid management in patients undergoing spine surgery in the prone position ‒ a randomised control trial. Anaesthesiol Intensive Ther. 2023;55:186−95.

8. Wongtangman K, Wilartratsami S, Hemtanon N, et al. GoalDirected Fluid Therapy Based on Pulse-Pressure Variation Compared with Standard Fluid Therapy in Patients Undergoing Complex Spine Surgery: A Randomized Controlled Trial. Asian Spine J. 2022;16:352−60.

9. Messina A, Montagnini C, Cammarota G, et al. Assessment of Fluid Responsiveness in Prone Neurosurgical Patients Undergoing Protective Ventilation: Role of Dynamic Indices, Tidal Volume Challenge, and End-Expiratory Occlusion Test. Anesth Analg. 2020;130:752−61.

10. Myatra SN, Prabu NR, Divatia JV, et al. The Changes in Pulse Pressure Variation or Stroke Volume Variation After a “Tidal Volume Challenge” Reliably Predict Fluid Responsiveness During Low Tidal Volume Ventilation. Crit Care Med. 2017;45:415−21.

11. Abawi D, Faragli A, Schwarzl M, et al. Cardiac power output accurately reflects external cardiac work over a wide range of inotropic states in pigs. BMC Cardiovasc Disord. 2019;19:1−11.

12. Grodin JL, Mullens W, Dupont M, et al. Prognostic role of cardiac power index in ambulatory patients with advanced heart failure. Eur J Heart Fail. 2015;17:689−96.

13. Cotter G, Williams SG, Vered Z, et al. Role of cardiac power in heart failure. Curr Opin Cardiol. 2003;18:215−22.

14. Baldetti L, Pagnesi M, Gallone G, et al. Prognostic value of right atrial pressure-corrected cardiac power index in cardiogenic shock. ESC Heart Fail. 2022;9:3920−30.

15. Yang S-Y, Shim J-K, Song Y, et al. Validation of pulse pressure variation and corrected flow time as predictors of fluid responsiveness in patients in the prone position. Br J Anaesth. 2013;110:713−20.

16. Dharmavaram S, Jellish WS, Nockels RP, et al. Effect of prone positioning systems on hemodynamic and cardiac function during lumbar spine surgery: an echocardiographic study. Spine (Phila Pa 1976). 2006;31:1388−93. discussion 1394.

17. Biais M, Bernard O, Ha J, et al. Abilities of Pulse Pressure Variations and Stroke Volume Variations to Predict Fluid Responsiveness in Prone Position During Scoliosis Surgery. Survey Anesthesiol. 2011;55:49−50.

18. Ghahremani-Nasab L, Toufan-Tabrizi M, Javanshir E, et al. Assessing cardiac power output values in a healthy adult population. Int J Cardiovasc Imaging. 2024;40:517−26.

19. Taha HS, Mohamed AM, Mahrous HA, et al. Correlation of echocardiographic parameters in prone and supine positions in normal adults using a novel approach. Echocardiography. 2021;38:892−900.

20. Kwee MM, Ho YH, Rozen WM. The prone position during surgery and its complications: a systematic review and evidence-based guidelines. Int Surg. 2015;100:292−303.

21. Park JH, Kwon JY, Lee SE, et al. Sudden hemodynamic collapse after prone positioning on a Jackson spinal table for spinal surgery. Korean J Anesthesiol. 2020;73:71−4.

22. Perilli V, Aceto P, Luca E, et al. Further hemodynamic insight into patients undergoing liver transplantation: A preliminary report on cardiac power index. Transplantation Proceedings: Elsevier. 2020: 1585−7.

23. Jacob R, Dierberger B, Kissling G. Functional significance of the Frank-Starling mechanism under physiological and pathophysiological conditions. Eur Heart J. 1992;13(suppl_E):7−14.

24. Wang X, Liu S, Gao J, et al. Does tidal volume challenge improve the feasibility of pulse pressure variation in patients mechanically ventilated at low tidal volumes? A systematic review and meta-analysis. Critical Care. 2023;27:45.

25. Kimura A, Suehiro K, Juri T, et al. Hemodynamic changes via the lung recruitment maneuver can predict fluid responsiveness in stroke volume and arterial pressure during one-lung ventilation. Anesth Analg. 2021;133:44−52.

26. Toyota S, Amaki Y. Hemodynamic evaluation of the prone position by transesophageal echocardiography. J Clin Anesth. 1998;10:32−5.

27. Jabaley C, Dudaryk R. Fluid resuscitation for trauma patients: crystalloids versus colloids. Current Anesthesiology Reports. 2014;4:216−24.

28. Mukkamala R, Kohl BA, Mahajan A. Comparison of accuracy of two uncalibrated pulse contour cardiac output monitors in offpump coronary artery bypass surgery patients using pulmonary artery catheter-thermodilution as a reference. BMC Anesthesiol. 2021;21:189.

29. Kouz K, Scheeren TWL, de Backer D, et al. Pulse Wave Analysis to Estimate Cardiac Output. Anesthesiology. 2021;134:119−26.

30. Hughey S, Cole J, Booth G. Pulse Wave Analysis to Estimate Cardiac Output: Comment. Anesthesiology. 2021;135:370−1.


Submitted date:
04/08/2024

Accepted date:
07/23/2024

66ce02b1a953951d8a446ea3 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections