Decreasing inconsistent alarms notifications: a pragmatic clinical trial in a post-anesthesia care unit
Diminuindo notificações de alarmes inconsistentes: um ensaio clínico pragmático em uma unidade de recuperação pós-anestésica
Saullo Queiroz Silveira, Rafael Sousa Fava Nersessian, Arthur de Campos Vieira Abib, Leonardo Barbosa Santos, Fernando Nardy Bellicieri, Karen Kato Botelho, Helidea de Oliveira Lima, Renata Mazzoni de Queiroz, Gabriel Silva dos Anjos, Hermann dos Santos Fernandes, Glenio B. Mizubuti, Joaquim Edson Vieira, Leopoldo Muniz da Silva
Abstract
Background
Alarms alert healthcare professionals of deviations from normal/physiologic status. However, alarm fatigue may occur when their high pitch and diversity overwhelm clinicians, possibly leading to alarms being disabled, paused, and/or ignored. We aimed to determine whether a staff educational program on customizing alarm settings of bedside monitors may decrease inconsistent alarms in the Post-Anesthesia Care Unit (PACU).
Methods
This is a prospective, analytic, quantitative, pragmatic, open-label, single-arm study. The outcome was evaluated on PACU admission before (P1) and after (P2) the implementation of the educational program. The heart rate, blood pressure, and oxygen saturation alarms were selected for clinical consistency.
Results
A total of 260 patients were included and 344 clinical alarms collected, with 270 (78.4%) before (P1), and 74 (21.6%) after (P2) the intervention. Among the 270 alarms in P1, 45.2% were inconsistent (i.e., false alarms), compared to 9.4% of the 74 in P2. Patients with consistent alarms occurred in 30% in the P1 and 27% in the P2 (p = 0.08). Patients with inconsistent alarms occurred in 25.4% in the P1 and in 3.8% in the P2. Ignored consistent alarms were reduced from 21.5% to 2.6% (p = 0.004) in the P2 group. The educational program was a protective factor for the inconsistent clinical alarm (OR = 0.11 [95% CI 0.04–0.3]; p < 0.001) after adjustments for age, gender, and ASA physical status.
Conclusion
Customizing alarm settings on PACU admission proved to be a protective factor against inconsistent alarm notifications of multiparametric monitors.
Keywords
Resumo
Introdução
Os alarmes alertam os profissionais de saúde sobre desvios do estado normal/fisiológico. No entanto, a fadiga dos alarmes pode ocorrer quando o seu tom agudo e diversidade sobrecarregam os médicos, possivelmente levando à desativação, pausa e/ou ignoração dos alarmes. Nosso objetivo foi determinar se um programa educacional da equipe sobre a personalização das configurações de alarme dos monitores de cabeceira pode diminuir os alarmes inconsistentes na Sala de Recuperação Pós-Anestesia (SRPA).
Métodos
Este é um estudo prospectivo, analítico, quantitativo, pragmático, aberto e de braço único. O desfecho foi avaliado na admissão na SRPA antes (P1) e após (P2) a implementação do programa educativo. Os alarmes de frequência cardíaca, pressão arterial e saturação de oxigênio foram selecionados para consistência clínica.
Resultados
Foram incluídos 260 pacientes e coletados 344 alarmes clínicos, sendo 270 (78,4%) antes (P1) e 74 (21,6%) após (P2) a intervenção. Entre os 270 alarmes em P1, 45,2% eram inconsistentes (ou seja, alarmes falsos), em comparação com 9,4% dos 74 em P2. Pacientes com alarmes consistentes ocorreram em 30% no P1 e 27% no P2 (p = 0,08). Pacientes com alarmes inconsistentes ocorreram em 25,4% no P1 e em 3,8% no P2. Os alarmes consistentes ignorados foram reduzidos de 21,5% para 2,6% (p = 0,004) no grupo P2. O programa educativo foi fator de proteção para alarme clínico inconsistente (OR = 0,11 [IC 95% 0,04–0,3]; p < 0,001) após ajustes para idade, sexo e estado físico ASA.
Conclusão
A personalização das configurações de alarme na admissão na SRPA mostrou-se um fator de proteção contra notificações de alarme inconsistentes dos monitores multiparamétricos.
Palavras-chave
References
1. Hu X, Sapo M, Nenov V, et al. Predictive combinations of monitor alarms preceding in-hospital code blue events. J Biomed Inform. 2012;45:913−21.
2. Borowski M, Gorges M, Fried R, Such O, Wrede C, Imhoff M. Med- € ical device alarms. Biomed Tech (Berl). 2011;56:73−83.
3. Claudio D, Deb S, Diegel E. A Framework to Assess Alarm Fatigue Indicators in Critical Care Staff. Crit Care Explor. 2021;3:e0464.
4. The Joint Commission. National Patient Safety Goals Effective January 2020. Hospital Accreditation Program. https://www.jointcommission.org/-/media/tjc/documents/standards/nationalpatient-safety-goals/2020-hap-npsg-goals-final.pdf. Accessed 12 Feb 2023.
5. Ruskin KJ, Hueske-Kraus D. Alarm fatigue: impacts on patient safety. Curr Opin Anaesthesiol. 2015;28:685−90.
6. Paine CW, Goel VV, Ely E, et al. Systematic review of physiologic monitor alarm characteristics and pragmatic interventions to reduce alarm frequency. J Hosp Med. 2016;11: 136−44.
7. Simpson KR, Lyndon A. False Alarms and overmonitoring: major factors in alarm fatigue among labor nurses. J Nurs Care Qual. 2019;34:66−72.
8. Alsaad AA, Alman CR, Thompson KM, Park SH, Monteau RE, Maniaci MJ. A multidisciplinary approach to reducing alarm fatigue and cost through appropriate use of cardiac telemetry. Postgrad Med J. 2017;93:430−5.
9. Jams € a JO, Uutela KH, Tapper AM, Lehtonen L. Clinical alarms, € and alarm fatigue in a University Hospital Emergency Department-A retrospective data analysis. Acta Anaesthesiol Scand. 2021;65:979−85.
10. Sowan AK, Vera AG, Fonseca EI, et al. Nurse competence on physiologic monitors use: Toward eliminating alarm fatigue in intensive care units. Open Med Inform J. 2017;11:1−11.
11. Hravnak M, Pellathy T, Chen L, et al. A call to alarms: Current state and future directions in the battle against alarm fatigue. J Electrocardiol. 2018;51(6S):S44−8.
12. Cvach M. Monitor alarm fatigue: an integrative review. Biomed Instrum Technol. 2012;46:268−77.
13. Honan L, Funk M, Maynard M, Fahs D, Clark JT, David Y. Nurses’ perspectives on clinical alarms. Am J Crit Care. 2015;24:387−95. 14. Joshi R, Mortel HV, Feijs L, Andriessen P, Pul CV. The heuristics of nurse responsiveness to critical patient monitor and ventilator alarms in a private room neonatal intensive care unit. PLoS One. 2017;12:e0184567.
15. Wilken M, Huske-Kraus D, Klausen A, Koch C, Schlauch W, R € ohrig € R. Alarm fatigue: Causes and effects. Stud Health Technol Inform. 2017;243:107−11.
16. Winters BD, Cvach MM, Bonafide CP, et al. Society for Critical Care Medicine Alarm and Alert Fatigue Task Force. Technological distractions (part 2): a summary of approaches to manage clinical alarms with intent to reduce alarm fatigue. Crit Care Med. 2018;46:130−7.
17. Bonafide CP, Lin R, Zander M, et al. Association between exposure to non-actionable physiologic monitor alarms and response time in a children’s hospital. J Hosp Med. 2015;10:345−51.
18. Bonafide CP, Localio AR, Holmes JH, et al. Video analysis of factors associated with response time to physiologic monitor alarms in a children’s hospital. JAMA Pediatr. 2017;171:524−31.
19. Mira JJ, Lorenzo S, Carrillo I, et al. Research Group on Second and Third Victims. Lessons learned for reducing the negative impact of adverse events on patients, health professionals and healthcare organizations. Int J Qual Health Care. 2017;29:450−60.
20. American Association of Critical Care Nurses. Managing alarms in acute care across the life span: electrocardiography and pulse oximetry. Crit Care Nurse. 2018;38:el6−20.
21. Zwarenstein M, Treweek S, Gagnier JJ, et al. CONSORT group; Pragmatic Trials in Healthcare (Practihc) group. Improving the reporting of pragmatic trials: an extension of the CONSORT statement. BMJ. 2008;337:a2390.
22. Graham KC, Cvach M. Monitor alarm fatigue: standardizing use of physiological monitors and decreasing nuisance alarms. Am J Crit Care. 2010;19:28−34.
23. Brantley A, Collins-Brown S, Kirkland J, et al. Clinical Trial of an Educational Program to Decrease Monitor Alarms in a Medical Intensive Care Unit. AACN Adv Crit Care. 2016;27:283−9.
24. Faul F, Erdfelder E, Lang A-G, G*Power Buchner A. 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175−91.
25. Assis AP, Oliveira FT, Camerini FG, Silva RCLD. Moraes CM. Individualized parameterization of multiparametric monitors alarms in infarcted patients. Rev Bras Enferm. 2019;72:609−16.
26. Sowan AK, Vera AG, Fonseca EI, Reed CC, Tarriela AF, Berndt AE. Nurse competence on physiologic monitors use: Toward eliminating alarm fatigue in intensive care units. Open Med Inform J. 2017;11:1−11.
27. Albert NM, Murray T, Bena JF, et al. Differences in alarm events between disposable and reusable electrocardiography lead wires. Am J Crit Care. 2015;24:67−73.
28. Ruppel H, Funk M, Kennedy HP, Bonafide CP, Wung SF, Whittemore R. Challenges of customizing electrocardiography alarms in intensive care units: A mixed methods study. Heart Lung. 2018;47:502−8.
29. Poncette AS, Wunderlich MM, Spies C, et al. Patient Monitoring Alarms in an Intensive Care Unit: Observational Study with DoIt-Yourself Instructions. J Med Internet Res. 2021;23:e26494.
30. Sedgwick P, Greenwood N. Understanding the Hawthorne effect. BMJ. 2015;351:h4672.