Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1016/j.bjane.2021.10.019
Brazilian Journal of Anesthesiology
Experimental Trials

Morphine promotes migration and lung metastasis of mouse melanoma cells

Morfina promove migração e metástase pulmonar de células de melanoma de camundongo

Golnaz Vaseghi, Nasim Dana, Ahmad Ghasemi, Reza Abediny, Ismail Laher, Shaghayegh Haghjooy Javanmard

Downloads: 0
Views: 599

Abstract

Background
Morphine is an analgesic agent used for cancer pain management. There have been recent concerns that the immunosuppressant properties of morphine can also promote cancer metastasis. Morphine is an agonist for toll like receptor 4 (TLR4) that has a dual role in cancer development. The promotor or inhibitor role of morphine in cancer progression remains controversial. We investigated the effects of morphine on migration and metastasis of melanoma cells through TLR4 activation.

Methods
Mouse melanoma cells (B16F10) were treated with only morphine (0, 0.1, 1, and 10 μM) or in combination with a TLR4 inhibitor (morphine10 μM +CLI-095 1μM) for either 12 or 24 hours. Migration of cells was analyzed by transwell migration assays. Twenty C57BL/6 male mice were inoculated with B16F10 cells via the left ventricle of the heart and then randomly divided into two groups (n = 10 each) that received either morphine (10 mg.kg−1, sub-q) or PBS injection for 21 days (control group). Animals were euthanized and their lungs removed for evaluation of metastatic nodules.

Results
Morphine (0.1, 1, and 10 μM) increased cell migration after 12 hours (p < 0.001) and after 24 hours of treatment with morphine (10 μM) (p < 0.001). Treatment with CLI-095 suppressed migration compared to cells treated with morphine alone (p < 0.001). Metastatic nodules in the morphine-treated group (64 nodules) were significantly higher than in the control group (40 nodules) (p < 0.05).

Conclusion
Morphine increases the migration and metastasis of mouse melanoma cells by activating TLR4.

Keywords

Morphine;  toll-like receptor-4;  melanoma;  metastasis

Resumo

Introdução

A morfina é um agente analgésico usado para o tratamento da dor oncológica. Tem havido preocupações recentes de que as propriedades imunossupressoras da morfina também possam promover a metástase do câncer. A morfina é um agonista do receptor tipo toll-4 (TLR4) que tem um papel duplo no desenvolvimento do câncer. O papel promotor ou inibidor da morfina na progressão do câncer permanece controverso. Nós investigamos os efeitos da morfina na migração e metástase de células de melanoma através da ativação de TLR4.

Métodos

Células de melanoma de camundongo (B16F10) foram tratadas apenas com morfina (0, 0,1, 1 e 10 μM) ou em combinação com um inibidor de TLR4 (morfina 10 μM +CLI-095 1 μM) por 12 ou 24 horas. A migração de células foi analisada por ensaios de migração transwell. Vinte camundongos machos C57BL/6 foram inoculados com células B16F10 através do ventrículo esquerdo do coração e então divididos aleatoriamente em dois grupos (n = 10 cada) que receberam morfina (10 mg.kg−1, sub-q) ou injeção de PBS por 21 dias (grupo controle). Os animais foram sacrificados e seus pulmões removidos para avaliação de nódulos metastáticos.

Resultados

A morfina (0,1, 1 e 10 μM) aumentou a migração celular após 12 horas (p < 0,001) e após 24 horas de tratamento com morfina (10 μM) (p < 0,001). O tratamento com CLI-095 suprimiu a migração em comparação com células tratadas apenas com morfina (p < 0,001). Nódulos metastáticos no grupo tratado com morfina (64 nódulos) foram significativamente maiores do que no grupo controle (40 nódulos) (p < 0,05).

Conclusão

A morfina aumenta a migração e metástase de células de melanoma de camundongo ativando TLR4.

Palavras-chave

Morfina; receptor tipo toll-4; melanoma; metástase

References

1. Li Z, Aninditha T, Griene B, et al. Burden of cancer pain in developing countries: a narrative literature review. Clinicoecon Outcomes Res: CEOR. 2018;10:675−91.

2. Swarm RA, Abernethy AP, Anghelescu DL, et al. Adult cancer pain. J Natl Compr Canc Netw: JNCCN. 2013;11:992−1022.

3. Afsharimani B, Baran J, Watanabe S, et al. Morphine and breast tumor metastasis: the role of matrix-degrading enzymes. Clin Exp Metastasis. 2014;31:149−58.

4. Vallejo R, de Leon-Casasola O, Benyamin R. Opioid therapy and immunosuppression: a review. Am J Ther. 2004;11:354−65.

5. Ghasemi A, Vaseghi G, Hojjatallah A, et al. The effects of morphine on vascular cell adhesion molecule 1(VCAM-1) concentration in lung cancer cells. Arch Physiol Biochem. 2021. https:// doi.org/10.1080/13813455.2020.1838552. [Ahead of print].

6. Tegeder I, Grosch S, Schmidtko A, et al. G protein-independent € G1 cell cycle block and apoptosis with morphine in adenocarcinoma cells: involvement of p53 phosphorylation. Cancer Res. 2003;63:1846−52.

7. Sasamura T, Nakamura S, Iida Y, et al. Morphine analgesia suppresses tumor growth and metastasis in a mouse model of cancer pain produced by orthotopic tumor inoculation. Eur J Pharmacol. 2002;441:185−91.

8. Harimaya Y, Koizumi K, Andoh T, et al. Potential ability of morphine to inhibit the adhesion, invasion and metastasis of metastatic colon 26-L5 carcinoma cells. Cancer Lett. 2002;187:121−7.

9. Lennon FE, Mirzapoiazova T, Mambetsariev B, et al. The Mu opioid receptor promotes opioid and growth factor-induced proliferation, migration and Epithelial Mesenchymal Transition (EMT) in human lung cancer. PloS one. 2014;9:e91577.

10. Ecimovic P, Murray D, Doran P, et al. Direct effect of morphine on breast cancer cell function in vitro: role of the NET1 gene. Br J Anaesth. 2011;107:916−23.

11. Farooqui M, Li Y, Rogers T, et al. COX-2 inhibitor celecoxib prevents chronic morphine-induced promotion of angiogenesis, tumour growth, metastasis and mortality, without compromising analgesia. Br J Cancer. 2007;97:1523−31.

12. Maneckjee R, Biswas R, Vonderhaar BK. Binding of opioids to human MCF-7 breast cancer cells and their effects on growth. Cancer Res. 1990;50:2234−8.

13. Bimonte S, Barbieri A, Palma G, et al. The role of morphine in animal models of human cancer: does morphine promote or inhibit the tumor growth? Biomed Res Int. 2013;2013:258141.

14. Ishikawa M, Tanno K, Kamo A, et al. Enhancement of tumor growth by morphine and its possible mechanism in mice. Biol Pharm Bull. 1993;16:762−6.

15. Zhang XY, Liang YX, Yan Y, et al. Morphine: double-faced roles in the regulation of tumor development. Clin Transl Oncol. 2018;20:808−14.

16. Kaserer T, Lantero A, Schmidhammer H, et al. m Opioid receptor: novel antagonists and structural modeling. Sci Rep. 2016;6:21548.

17. Vaseghi G, Rabbani M, Hajhashemi V. The effect of nimodipine on memory impairment during spontaneous morphine withdrawal in mice: Corticosterone interaction. Eur J Pharmacol. 2012;695:83−7.

18. Vaseghi G, Rabbani M, Hajhashemi V. The CB(1) receptor antagonist, AM281, improves recognition loss induced by naloxone in morphine withdrawal mice. Basic Clin Pharmacol Toxicol. 2012;111:161−5.

19. Zhang P, Yang M, Chen C, et al. Toll-like receptor 4 (TLR4)/opioid receptor pathway crosstalk and impact on opioid analgesia, immune function, and gastrointestinal motility. Front Immunol. 2020;11:1455.

20. Vaure C, Liu Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol. 2014;5:316.

21. Sato Y, Goto Y, Narita N, et al. Cancer cells expressing toll-like receptors and the tumor microenvironment. Cancer Microenviron. 2009;2(S1):205−14.

22. Xie N, Matigian N, Vithanage T, et al. Effect of perioperative opioids on cancer-relevant circulating parameters: mu opioid receptor and toll-like receptor 4 activation potential, and proteolytic profile. Clin Cancer Res. 2018;24:2319−27.

23. Xie N, Gomes FP, Deora V, et al. Activation of m-opioid receptor and Toll-like receptor 4 by plasma from morphine-treated mice. Brain Behav Immun. 2017;61:244−58.

24. Li J, Yang F, Wei F, et al. The role of toll-like receptor 4 in tumor microenvironment. Oncotarget. 2017;8:66656−67.

25. Yang H, Wang B, Wang T, et al. Toll-Like Receptor 4 prompts human breast cancer cells invasiveness via lipopolysaccharide stimulation and is overexpressed in patients with lymph node metastasis Dileepan KN, editor. PLoS ONE. 2014;9: e109980.

26. Wang EL, Qian ZR, Nakasono M, et al. High expression of Tolllike receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br J Cancer. 2010;102:908−15.

27. Dana N, Javanmard SH, Vaseghi G. Effect of lipopolysaccharide on toll-like receptor-4 signals in mouse cancer cells. Bratislavske Lekarske Listy. 2017;118:598−601.

28. Dana N, Haghjooy Javanmard S, Vaseghi G. The effect of fenofibrate, a PPARa activator on toll-like receptor-4 signal transduction in melanoma both in vitro and in vivo. Clin Transl Oncol. 2020;22:486−94.

29. Dana N, Vaseghi G, Haghjooy Javanmard S. PPAR g agonist, pioglitazone, suppresses melanoma cancer in mice by inhibiting TLR4 signaling. J Pharm Pharm Sci. 2019;22:418−23.

30. Haghjooy-Javanmard S, Ghasemi A, Laher I, et al. Influence of morphine on TLR4/NF-kB signaling pathway of MCF-7 cells. Bratisl Lek Listy. 2018;119:229−33.

31. Venter C, Niesler C. Rapid quantification of cellular proliferation and migration using ImageJ. BioTechniques. 2019;66:99−102.

32. Cao L-H, Li H-T, Lin W-Q, et al. Morphine, a potential antagonist of cisplatin cytotoxicity, inhibits cisplatin-induced apoptosis and suppression of tumor growth in nasopharyngeal carcinoma xenografts. Sci Rep. 2016;6:18706.

33. Zbytek B, Carlson JA, Granese J, et al. Current concepts of metastasis in melanoma. Expert Rev Dermatol. 2008;3:569−85.

34. Talmadge JE, Fidler IJ. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 2010;70:5649−69.

35. Vaseghi G, Haghjoo-Javanmard S, Naderi J, et al. Coffee consumption and risk of nonmelanoma skin cancer: a dose −response meta-analysis. Eur J Cancer Prev. 2018;27:164−70.

36. Dana N, Vaseghi G, Haghjooy Javanmard S. Activation of PPARg inhibits TLR4 signal transduction pathway in melanoma cancer in vitro. Adv Pharm Bull. 2020;10:458−63.

37. Dana N, Vaseghi G, Haghjooy-Javanmard S. Crosstalk between peroxisome proliferator-activated receptors and toll-like receptors: a systematic review. Adv Pharm Bull. 2019;9:12−21.

38. Mittal D, Saccheri F, Ven ereau E, et al. TLR4-mediated skin car- cinogenesis is dependent on immune and radioresistant cells. EMBO J. 2010;29:2242−52.

39. Liang X, Liu R, Chen C, et al. Opioid system modulates the immune function: a review. Transl Perioper Pain Med. 2016;1:5−13.

40. Wang X, Loram LC, Ramos K, et al. Morphine activates neuroinflammation in a manner parallel to endotoxin. Proc Natl Acad Sci U S A. 2012;109:6325−30.

41. Gach K, Szemraj J, Wyrebska A, et al. The in ˛ fluence of opioids on matrix metalloproteinase-2 and -9 secretion and mRNA levels in MCF-7 breast cancer cell line. Mol Biol Rep. 2011;38:1231−6.

42. Tuerxun H, Cui J. The dual effect of morphine on tumor development. Clin Transl Oncol. 2019;21:695−701.

43. Gupta K, Kshirsagar S, Chang L, et al. Morphine stimulates angiogenesis by activating proangiogenic and survival-promoting signaling and promotes breast tumor growth. Cancer Res. 2002;62:4491−8.

44. Cheng S, Guo M, Liu Z, et al. Morphine promotes the angiogenesis of postoperative recurrent tumors and metastasis of dormant breast cancer cells. Pharmacology. 2019;104:276−86.

45. Zong J, Pollack GM. Morphine antinociception is enhanced in mdr1a gene-deficient mice. Pharm Res. 2000;17:749−53.

626fe41da953951aea04d162 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections