Brazilian Journal of Anesthesiology
Brazilian Journal of Anesthesiology
Original Investigation

Agreement analysis of Stroke Volume and Cardiac Output measurement between a Oscillometric Device and Transthoracic Echocardiogram in normotensive individuals: a preliminary report

Análise de concordância da medida do volume sistólico e do débito cardíaco entre aparelho oscilométrico e ecocardiograma transtorácico em indivíduos normotensos: relato preliminar

Alejandro Godoy, Alejandro Contreras, Aldo Tabares

Downloads: 0
Views: 489


The evaluation of stroke volume (SV) is useful in research and patient care.

To accomplish this, an ideal device should be noninvasive, continuous, reliable, and reproducible. The Mobil-O-Graph (MOG) is a noninvasive oscillometric matrix validated for measuring aortic and peripheral blood pressure, which through conversion algorithms, can estimate hemodynamic parameters.

To compare the Mobil-O-Graph (MOG) measurement of stroke volume, cardiac output, and cardiac index with the transthoracic echocardiogram (TTE).

Healthy volunteers aged 18 years or older were included. Two-dimensional TTEs were performed by a single operator. Subsequently, the measurement of noninvasive hemodynamics with MOG was performed with the operator blind to the results of the echocardiogram. Correlation analyses between stroke volume, cardiac output, and cardiac index parameters were performed. The degree of agreement between the methods was verified using the Bland Altman method.

A total of 38 volunteers were enrolled with a mean age of 27.6 ± 3.8 years; 21 (55%) were male The SV by TTE was 76.8 ± 19.5 mL and 75.7 ± 19.3 mL by MOG, Rho = 0.726, p <  0.0001. The CO by TTE was 5.04 ± 0.8 mL.min-1 and 5.1 ± 0.8 mL.min-1 by MOG Rho = 0.510, p =  0.001. Bland-Altman plots showed a good concordance between the two techniques.

Our study shows that the measurement of SV and CO by noninvasive hemodynamics with the MOG device offers a good concordance with the TTE with very few values beyond the confidence limits.


Stroke volume;  Cardiac output;  Noninvasive hemodynamics oscillometric method;  Mobil-O-Graph



A avaliação do volume sistólico (VS) é útil na pesquisa e no atendimento ao paciente. Para conseguir isso, um dispositivo ideal deve ser não invasivo, contínuo, confiável e reprodutível. O Mobil-O-Graph (MOG) é uma matriz oscilométrica não invasiva validada para medir a pressão arterial aórtica e periférica, que por meio de algoritmos de conversão pode estimar parâmetros hemodinâmicos.


Comparar a medida MOG do volume sistólico, débito cardíaco e índice cardíaco com o ecocardiograma transtorácico (ETT).


Foram incluídos voluntários saudáveis com idade igual ou superior a 18 anos. ETTs bidimensionais foram realizados por um único operador. Posteriormente, a medida da hemodinâmica não invasiva com MOG foi realizada com o operador cego para os resultados do ecocardiograma. Foram realizadas análises de correlação entre o volume sistólico, o débito cardíaco e os parâmetros do índice cardíaco. O grau de concordância entre os métodos foi verificado pelo método de Bland-Altman.


Um total de 38 voluntários foram inscritos com idade média de 27,6 ± 3,8 anos; 21 (55%) eram do sexo masculino. O VS por ETT foi de 76,8 ± 19,5 mL e 75,7 ± 19,3 mL por MOG, Rho = 0,726, p < 0,0001. O DC por ETT foi de 5,04 ± 0,8 mL.min-1 e 5,1 ± 0,8 mL.min-1 por MOG Rho = 0,510, p = 0,001. Os gráficos de Bland-Altman mostraram uma boa concordância entre as duas técnicas.


Nosso estudo mostra que a medição de VS e DC por hemodinâmica não invasiva com o dispositivo MOG oferece uma boa concordância com o ETT com poucos valores além dos limites de confiança.


Volume sistólico; Débito cardíaco; Método oscilométrico hemodinâmico não invasivo; Mobil-O-Graph


1. García X, Mateu L, Maynar J, et al. Estimating cardiac output. Utility in the clinical practice. Available invasive and non-invasive monitoring. Med Intensiva (English Ed). 2011;35:552---61.

2. Souza CAd, Simões R, Borges KBG, et al. Arterial stiffness use for early monitoring of cardiovascular adverse events due to anthracycline chemotherapy in breast cancer patients. A pilot study. Arq Bras Cardiol. 2018;111:721---8.

3. Castro JM, García-Espinosa V, Curcio S, et al. Childhood obesity associates haemodynamic and vascular changes that result in increased central aortic pressure with augmented incident and reflected wave components, without changes in peripheral amplification. Int J Vasc Med. 2016;2016:3129304.

4. Abraham J, Bharmi R, Jonsson O, et al. Association of ambulatory hemodynamic monitoring of heart failure with clinical outcomes in a concurrent matched cohort analysis. JAMA Cardiol. 2019;4:556---63.

5. Flack JM. Noninvasive hemodynamic measurements: an important advance in individualizing drug therapies for hypertensive patients. Hypertension. 2006;47:646---7.

6. Wassertheurer S, Mayer C, Breitenecker F. Modeling arterial and left ventricular coupling for non-invasive measurements. Simul Model Pract Theory. 2008;16:988---97.

7. Hametner B, Wassertheurer S, Kropf J, et al. Oscillometric estimation of aortic pulse wave velocity: comparison with intra-aortic catheter measurements. Blood Press Monit. 2013;18:173---6.

8. Sanchez RA, Pessana F, Mirada M, et al. Central blood pressure: mobile o graph validation versus invasive aortic pressure. J Hypertens. 2019;37:e2.

9. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1---39.

10. Yamashiro SM, Daubenspeck JA, Bennett FM. Optimal regulation of left ventricular ejection pattern. J Appl Math Comput. 1979;5:41---54.

11. Grenier B, Dubreuil M, Journois D. Comparison of two measurement methods: The Bland and Altman assessment. Ann Fr Anesth Reanim. 2000;19:128---35.

12. Fellahi JL, Caille V, Charron C, et al. Noninvasive assessment of cardiac index in healthy volunteers: a comparison between thoracic impedance cardiography and Doppler echocardiography. Anesth Analg. 2009;108:1553---9.

13. McIntyre JPR, Ellyett KM, Mitchell EA, et al. Validation of thoracic impedance cardiography by echocardiography in healthy late pregnancy. BMC Pregnancy Childbirth. 2015;15:70.

14. Bauer A, Hametner B, Weber T, et al. Method comparison and validation of the determination of ejection duration from oscillometric measurements. IFAC Papers OnLine. 2018;51:343---8.

15. Reshetnik A, Compton F, Schölzel A, et al. Noninvasive oscillometric cardiac output determination in the intensive care unit ---- comparison with invasive transpulmonary thermodilution. Sci Rep. 2017;7:9997.

16. Critchley LA, Critchley JA. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput. 1999;15:85---91.

17. Castor G, Klocke RK, Stoll M, et al. Simultaneous measurement of cardiac output by thermodilution, thoracic electrical bioimpedance and Doppler ultrasound. Br J Anaesth. 1994;72:133---8.

18. Ng HW, Walley TJ, Mostafa SM. Comparison of thermodilution, thoracic electrical bioimpedance and Doppler ultrasound cardiac output measurement. Br J Anaesth. 1994;73:119---20.

19. Cranney GB, Lotan CS, Dean L, et al. Left ventricular volume measurement using cardiac axis nuclear magnetic resonance imaging. Validation by calibrated ventricular angiography. Circulation. 1990;82:154---63.

20. Hundley WG, Li HF, Hillis LD, et al. Quantitation of cardiac output with velocity-encoded, phase-difference magnetic resonance imaging. Am J Cardiol. 1995;75:1250---5.

615ef337a953950b38286802 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections