Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1016/j.bjane.2021.08.023
Brazilian Journal of Anesthesiology
Original Investigation

Investigating preoperative myoglobin level as predictive factor for acute kidney injury following cardiac surgery with cardiopulmonary bypass: a retrospective observational study

Investigando o nível de mioglobina pré-operatório como fator preditivo de lesão renal aguda após cirurgia cardíaca com circulação extracorpórea: um estudo observacional retrospectivo

Kuen Su Lee, Hyun Joong Kim, Yoon Sook Lee, Yoon Ji Choi, Sang Min Yoon, Woon Young Kim, Jae Hwan Kim

Downloads: 1
Views: 532

Abstract

Background
Early identification of patients at risk of AKI after cardiac surgery is of critical importance for optimizing perioperative management and improving outcomes. This study aimed to identify the association between preoperative myoglobin levels and postoperative acute kidney injury (AKI) in patients undergoing valve surgery or coronary artery bypass graft surgery (CABG) with cardiopulmonary bypass.

Methods
This retrospective study included 293 patients aged over 17 years who underwent valve surgery or CABG with cardiopulmonary bypass. We excluded 87 patients as they met the exclusion criteria. Therefore, 206 patients were included in the final analysis. The patients’ demographics as well as intraoperative and postoperative data were collected from electronic medical records. AKI was defined according to the Acute Kidney Injury Network classification system.

Results
Of the 206 patients included in this study, 77 developed AKI. The patients who developed AKI were older, had a history of hypertension, underwent valve surgery with concomitant CABG, had lower preoperative hemoglobin levels, and experienced prolonged extracorporeal circulation (ECC) times. Multivariate logistic regression analysis revealed that preoperative myoglobin levels and ECC time were correlated with the development of AKI. A higher preoperative myoglobin level was an independent risk factor for the development of cardiac surgery-associated AKI.

Conclusions
Higher preoperative myoglobin levels may enable physicians to identify patients at risk of developing AKI and optimize management accordingly.

Keywords

Acute kidney injury;  Coronary artery bypass graft surgery;  Myoglobin;  Valve surgery

Resumo

Introdução

A identificação precoce de pacientes com risco de LRA após cirurgia cardíaca é de fundamental importância para otimizar o manejo perioperatório e melhorar os resultados. Este estudo teve como objetivo identificar a associação entre os níveis de mioglobina pré-operatórios e lesão renal aguda (LRA) pós-operatória em pacientes submetidos a cirurgia valvar ou cirurgia de revascularização do miocárdio (CRM) com circulação extracorpórea.

Métodos

Este estudo retrospectivo incluiu 293 pacientes com idade superior a 17 anos submetidos à cirurgia valvar ou revascularização do miocárdio com circulação extracorpórea. Excluímos 87 pacientes por atenderem aos critérios de exclusão. Portanto, 206 pacientes foram incluídos na análise final. Os dados demográficos dos pacientes, bem como os dados intra e pós-operatórios foram coletados de prontuários eletrônicos. A LRA foi definida de acordo com o sistema de classificação Acute Kidney Injury Network.

Resultados

Dos 206 pacientes incluídos neste estudo, 77 desenvolveram LRA. Os pacientes que desenvolveram LRA eram mais velhos, tinham histórico de hipertensão, foram submetidos a cirurgia valvar com revascularização do miocárdio concomitante, apresentavam níveis de hemoglobina pré-operatórios mais baixos e apresentavam tempos prolongados de circulação extracorpórea (CEC). A análise de regressão logística multivariada revelou que os níveis pré-operatórios de mioglobina e o tempo de CEC estavam correlacionados com o desenvolvimento de LRA. Um nível mais elevado de mioglobina pré-operatória foi um fator de risco independente para o desenvolvimento de LRA associada à cirurgia cardíaca.

Conclusão

Níveis mais elevados de mioglobina pré-operatória podem permitir que os médicos identifiquem pacientes com risco de desenvolver LRA e otimizem o manejo adequadamente.

Palavras-chave

Lesão renal aguda; Cirurgia de revascularização do miocárdio; Mioglobina; Cirurgia de válvula

References

1. Najafi M. Serum creatinine role in predicting outcome after cardiac surgery beyond acute kidney injury. World J Cardiol. 2014;6:1006–21.

2. Nina VJ, Matias MM, Brito DJ, et al. Acute kidney injury after coronary artery bypass grafting: assessment using RIFLE and AKIN criteria. Rev Bras Cir Cardiovasc. 2013;28:231–7.

3. Grams ME, Sang Y, Coresh J, et al. Acute kidney injury after major surgery: a retrospective analysis of veterans health administration data. Am J Kidney Dis. 2016;67:872–80.

4. Hobson CE, Yavas S, Segal MS, et al. Acute kidney injury is associated with increased long-term mortality after cardiothoracic surgery. Circulation. 2009;119:2444–53.

5. Mehta RL. Acute renal failure and cardiac surgery: marching in place or moving ahead? J Am Soc Nephrol. 2005;16:12–4.

6. Ramos KA, Dias CB. Acute kidney injury after cardiac surgery in patients without chronic kidney disease. Braz J Cardiovasc Surg. 2018;33:454–61.

7. Santos FO, Silveira MA, Maia RB, et al. Acute renal failure after coronary artery bypass surgery with extracorporeal circulation - incidence, risk factors, and mortality. Arq Bras Cardiol. 2004;83, 150-4;45-9.

8. De Santo LS, Romano G, Mango E, et al. Age and blood transfusion: relationship and prognostic implications in cardiac surgery. J Thorac Dis. 2017;9:3719–27.

9. Pontes JC, Silva GV, Benfatti RA, et al. Risk factors for the development of acute renal failure following on-pump coronary artery bypass grafting. Rev Bras Cir Cardiovasc. 2007;22:484–90.

10. Wang Y, Bellomo R. Cardiac surgery-associated acute kidney injury: risk factors, pathophysiology and treatment. Nat Rev Nephrol. 2017;13:697–711.

11. Santana-Santos E, Marcusso ME, Rodrigues AO, et al. Strategies for prevention of acute kidney injury in cardiac surgery: an integrative review. Rev Bras Ter Intensiva. 2014;26:183–92.

12. Patel UD, Garg AX, Krumholz HM, et al. Preoperative serum brain natriuretic peptide and risk of acute kidney injury after cardiac surgery. Circulation. 2012;125:1347–55.

13. Oezkur M, Gorski A, Peltz J, et al. Preoperative serum h-FABP concentration is associated with postoperative incidence of acute kidney injury in patients undergoing cardiac surgery. BMC Cardiovasc Disord. 2014;14:117.

14. Merchant ML, Brier ME, Slaughter MS, et al. Biomarker enhanced risk prediction for development of AKI after cardiac surgery. BMC Nephrol. 2018;19:102.

15. Huerta-Alardin AL, Varon J, Marik PE. Bench-to-bedside review: Rhabdomyolysis - an overview for clinicians. Crit Care. 2005;9:158–69.

16. Apollonova LA. The role of catecholamines in myoglobin content increase in the myocardium. Cor Vasa. 1983;25:267–73.

17. Cavalcante JL, Kusunose K, Obuchowski NA, et al. Prognostic impact of ischemic mitral regurgitation severity and myocardial infarct quantification by cardiovascular magnetic resonance. JACC Cardiovasc Imaging. 2020;13:1489–501.

18. Villavicencio R, Vargas Barron J, Andrade A, et al. Papillary muscle dysfunction in acute myocardial infarct: a clinical and Doppler echocardiographic study. Arch Inst Cardiol Mex. 1991;61:43–6.

19. Seiler C, Stoller M, Pitt B, et al. The human coronary collateral circulation: development and clinical importance. Eur Heart J. 2013;34:2674–82.

20. Zager RA. Myoglobin depletes renal adenine nucleotide pools in the presence and absence of shock. Kidney Int. 1991;39:111–9.

21. Holt SG, Moore KP. Pathogenesis and treatment of renal dysfunction in rhabdomyolysis. Intensive Care Med. 2001;27:803–11.

22. Panizo N, Rubio-Navarro A, Amaro-Villalobos JM, et al. Molecular mechanisms and novel therapeutic approaches to rhabdomyolysis-induced acute kidney injury. Kidney Blood Press Res. 2015;40:520–32.

23. Moore KP, Holt SG, Patel RP, et al. A causative role for redox cycling of myoglobin and its inhibition by alkalinization in the pathogenesis and treatment of rhabdomyolysis-induced renal failure. J Biol Chem. 1998;273:31731–7.

24. Heyman SN, Rosen S, Fuchs S, et al. Myoglobinuric acute renal failure in the rat: a role for medullary hypoperfusion, hypoxia, and tubular obstruction. J Am Soc Nephrol. 1996;7:1066–74.

25. Relihan M, Litwin MS. Clearance rate and renal effects of stroma-free hemoglobin on acidotic dogs. Surg Gynecol Obstet. 1973;137:73–9.

26. Brezis M, Rosen S. Hypoxia of the renal medulla–its implications for disease. N Engl J Med. 1995;332:647–55.

27. Ruiz-Guinazu A, Coelho JB, Paz RA. Methemoglobin-induced acute renal failure in the rat. In vivo observation, histology and micropuncture measurements of intratubular and postglomerular vascular pressures. Nephron. 1967;4:257–75.

28. Zager RA, Gamelin LM. Pathogenetic mechanisms in experimental hemoglobinuric acute renal failure. Am J Physiol. 1989;256:F446–55.

29. Paller MS. Hemoglobin- and myoglobin-induced acute renal failure in rats: role of iron in nephrotoxicity. Am J Physiol. 1988;255:F539–44.

30. Shah SV, Walker PD. Evidence suggesting a role for hydroxyl radical in glycerol-induced acute renal failure. Am J Physiol. 1988;255:F438–43.

31. Zager RA, Burkhart K. Myoglobin toxicity in proximal human kidney cells: roles of Fe, Ca2+, H2O2, and terminal mitochondrial electron transport. Kidney Int. 1997;51:728–38.

32. Benedetto U, Angeloni E, Luciani R, et al. Acute kidney injury after coronary artery bypass grafting: does rhabdomyolysis play a role? J Thorac Cardiovasc Surg. 2010;140:464–70.

33. Ortega-Loubon C, Fernandez-Molina M, Paneda-Delgado L, et al. Predictors of postoperative acute kidney injury after coronary artery bypass graft surgery. Braz J Cardiovasc Surg. 2018;33:323–9.

34. Mariscalco G, Cottini M, Dominici C, et al. The effect of timing of cardiac catheterization on acute kidney injury after cardiac surgery is influenced by the type of operation. Int J Cardiol. 2014;173:46–54.

35. De Santo L, Romano G, Della Corte A, et al. Preoperative anemia in patients undergoing coronary artery bypass grafting predicts acute kidney injury. J Thorac Cardiovasc Surg. 2009;138:965–70.

36. Iung B, Baron G, Butchart EG, et al. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur Heart J. 2003;24:1231–43.

37. Callejas R, Panadero A, Vives M, et al. Preoperative predictive model for acute kidney injury after elective cardiac surgery: a prospective multicenter cohort study. Minerva Anestesiol. 2019;85:34–44.

38. Grynberg K, Polkinghorne KR, Ford S, et al. Early serum creatinine accurately predicts acute kidney injury post cardiac surgery. BMC Nephrol. 2017;18:93.


Submitted date:
01/13/2021

Accepted date:
08/28/2021

6194159aa9539559a551c224 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections