Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1016/j.bjane.2021.06.024
Brazilian Journal of Anesthesiology
Original Investigation

Effect of mechanical ventilation during cardiopulmonary bypass on oxidative stress: a randomized clinical trial

Efeito da ventilação mecânica durante a circulação extracorpórea no estresse oxidativo: um ensaio clínico randomizado

Yavuz Orak; Filiz Alkan Baylan; Aydemir Kocaslan; Erdinc Eroglu; Mehmet Acipayam; Mehmet Kirisci; Omer Faruk Boran; Adem Doganer

Downloads: 1
Views: 650

Abstract

Background: Cardiopulmonary bypass (CPB) causes systemic oxidative stress response and endothelial damage in systemic organs. We investigated the effects of positive end-expiratory pressure (PEEP) and mechanical ventilation (MV) applications on oxidative stress in CPB.

Methods: Seventy-one patients were recruited and 60 completed the study. Randomized groups: MV off (Group 1); MV on, tidal volume (TV) at 3-4 mL.kg-1 (Group 2); MV on, TV at 3-4 mL.kg-1, PEEP at 5 cmH2O (Group 3), n = 20 in each group. As oxidative stress markers, we used glutathione peroxidase (GPx), total antioxidant status (TAS), total oxidant status (TOS), total and native thiol (TT, NT), malondialdehyde (MDA), and catalase. We also investigated the correlation between oxidative stress and postoperative intubation time.

Results: The postoperative GPx levels in Group 2 were higher than Group 3 (p = 0.017). In groups 2 and 3, TAS levels were higher postoperatively than intraoperatively (p = 0.001, p = 0.019, respectively). In Group 2, the TT levels were higher postoperatively than preoperatively and intraoperatively (p = 0.008). In Group 3, the postoperative MDA levels were higher than preoperatively (p = 0.001) and were higher than both postoperative levels of Group 1 and 2 (p = 0.043, p = 0.003). As the preoperative TAS (Group 2) decreased and the postoperative NT (Group 2) and catalase (Group 3) increased, the postoperative intubation time lengthened.

Conclusion: MV (3-4 mL.kg-1) alone seems to be the most advantageous strategy. Prolonged postoperative intubation time was associated with both increased NT and catalase levels.

Keywords

Oxidative stress, Peep, Tidal volume, Cardiopulmonary bypass

Resumo

Introdução: A circulação extracorpórea (CEC) causa resposta ao estresse oxidativo sistêmico e dano endotelial em órgãos sistêmicos. Nós investigamos os efeitos das aplicações de pressão expiratória final positiva (PEEP) e ventilação mecânica (VM) sobre o estresse oxidativo em CEC.

Métodos: Setenta e um pacientes foram recrutados e 60 completaram o estudo. Grupos randomizados: VM desligada (Grupo 1); VM ligada, volume corrente (VC) de 3 a 4 mL.kg-1 (Grupo 2); VM ligada, TV de 3 a 4 mL.kg-1, PEEP de 5 cmH2O (Grupo 3), n = 20 em cada grupo. Como marcadores de estresse oxidativo, usamos glutationa peroxidase (GPx), estado antioxidante total (EAT), estado oxidante total (TOS), tiol total e nativo (TT, TN), malondialdeído (MDA) e catalase. Também investigamos a correlação entre o estresse oxidativo e o tempo de intubação pós-operatória. 

Resultados: Os níveis de GPx pós-operatório no Grupo 2 foram maiores do que no Grupo 3 (p = 0,017). Nos grupos 2 e 3, os níveis de TAS foram maiores no pós-operatório do que no intraoperatório (p = 0,001, p = 0,019, respectivamente). No Grupo 2, os níveis de TT foram maiores no pós-operatório do que no pré-operatório e intraoperatório (p = 0,008). No Grupo 3, os níveis de MDA pós-operatório foram maiores do que no pré-operatório (p = 0,001) e foram maiores do que ambos os níveis pós-operatórios do Grupo 1 e 2 (p = 0,043, p = 0,003). À medida que a EAT pré-operatória (Grupo 2) diminuiu e a TN pós-operatória (Grupo 2) e a catalase (Grupo 3) aumentaram, o tempo de intubação pós-operatório aumentou. 

Conclusão: A VM (3-4 mL.kg-1) isolada parece ser a estratégia mais vantajosa. O tempo prolongado de intubação pós-operatória foi associado ao aumento dos níveis de TN e catalase.

Palavras-chave

Estresse oxidativo, Peep, Volume corrente, Circulação extracorpórea

References

1 Baufreton C, Corbeau JJ, Pinaud F. Inflammatory response and haematological disorders in cardiac surgery: toward a more physiological cardiopulmonary bypass. Ann Fr Anesth Reanim. 2006;25:510-20.

2 Dabbous A, Kassas C, Baraka A. The inflammatory response after cardiac surgery. Middle East J Anaesthesiol. 2003;17:233-54.

3 Kirklin JK, McGiffin DC. Early complications following cardiac surgery. Cardiovasc Clin. 1987;17:321-43.

4 Allou N, Bronchard R, Guglielminotti J, et al. Risk factors for postoperative pneumonia after cardiac surgery and development of a preoperative risk score. Crit Care Med. 2014;42:1150-6.

5 Bignami E, Guarnieri M, Saglietti F, et al. Different strategies for mechanical ventilation during Cardiopulmonary Bypass (CPB-VENT 2014): study protocol for a randomized controlled trial. Trials. 2017;18:264.

6 Ferrando C, Soro M, Belda FJ. Protection strategies during cardiopulmonary bypass: ventilation, anesthetics and oxygen. Curr Opin Anaesthesiol. 2015;28:73-80.

7 Pearson TA, Mensah GA, Alexander RW, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the centers for disease control and prevention and the American Heart Association. Circulation. 2003;107, 499-11.

8 García-Delgado M, Navarrete Sanchez I, Colmenero M. Preventing and managing perioperative pulmonary complications following cardiac surgery. Curr Opin Anesthesiol. 2014;27:146-52.

9 Hemmes SN, Serpa Neto A, Schultz MJ. Intraoperative ventilatory strategies to prevent postoperative pulmonary complications: a meta-analysis. Curr Opin Anesthesiol. 2013;26:126-33.

10 Chaney MA, Nikolov MP, Blakeman BP, et al. Protective ventilation attenuates postoperative pulmonary dysfunction in patients undergoing cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2000;14:514-8.

11 Koner O, Celebi S, Balci H, et al. Effects of protective and conventional mechanical ventilation on pulmonary function and systemic cytokine release after cardiopulmonary bypass. Intensive Care Med. 2004;30:620-6.

12 Zupancich E, Paparella D, Turani F, et al. Mechanical ventilation affects inflammatory mediators in patients undergoing cardiopulmonary bypass for cardiac surgery: a randomized clinical trial. J Thorac Cardiovasc Surg. 2005;130:378-83.

13 Bolli R. Oxygen-derived free radicals and myocardial reperfusion injury: an overview. Cardiovasc Drugs Ther. 1991;5:249-68.

14 Han C, Ding W, Jiang W, et al. A comparison of the effects of midazolam, propofol, and dexmedetomidine on the antioxidant system: a randomized trial. Exp Ther Med. 2015;9:2293-8.

15 Mentese U, Dogan OV, Turan I, et al. Oxidant-antioxidant balance during on-pump coronary artery bypass grafting. Sci World J. 2014;2014:263058.

16 Berndt C, Lillig CH, Holmgren A. Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system. Am J Physiol Heart Circ Physiol. 2007;292:1227-36.

17 Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351-8.

18 Beutler E. Red cell metabolism. A manual of biochemical methods. 2nd ed New York: Grune and Strattan Company; 1975. p. 67-9.

19 Beutler E. Red cell metabolism. A manual of biochemical methods. 2nd ed New York: Grune and Stratton Company; 1975, 261-5.15. Shimadzu UV. Spectro photometer-UV 1800. Japan.

20 Shimadzu UV - Spectro photometer-UV 1800. Japan.

21 Erel O, Neselioglu S. A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem. 2014;47:326-32.

22 Ko¸carslan A, Hazar A, Aydın MS, et al. Koroner bypass ameliyatı öncesi trimetazidin kullanımının oksidatif parametreler üzerine etkileri. Dicle Tıp Dergisi. 2013;40:589-96.

23 Hadjinikolaou L, Alexiou C, Cohen AS, et al. Early changes in plasma antioxidant and lipid peroxidation levels following coronary artery bypass surgery: a complex response. Eur J Cardiothorac Surg. 2003;23:969-75.

24 Luyten CR, van Overveld FJ, De Backer LA, et al. Antioxidant defence during cardiopulmonary bypass surgery. Eur J Cardiothorac Surg. 2005;27:611-6.

25 Arduini A, Mezzet A, Porecca E, et al. Effect of ischemia reperfusion on antioxidant enzymes and mitochondrial inner membrane proteins in perfused rat heart. Biochim Biophys Acta. 1988;970:113-21.

26 Inal M, Alatas O, Kanbak G, et al. Changes of antioxidant enzyme activities during cardiopulmonary bypass. J Cardiothorac Surg. 1999;40:373-6.

27 Dogan A, Turker FS. The effect of on-pump and off-pump bypass operations on oxidative damage and antioxidant parameters. Oxid Med Cell Longev. 2017;2017:8271376.

28 Matata BM, Sosnowski AW, Galin˜anes M. Off-pump bypass graft operation significantly reduces oxidative stress and inflammation. Ann Thorac Surg. 2000;69:785-91.

29 Ozgunay SE, Ozsin KK, Ustundag Y, et al. The effect of continuous ventilation on thiol-disulphide homeostasis and albumin-adjusted ischemia-modified albumin during cardiopulmonary bypass. Braz J Cardiovasc Surg. 2019;34:436-43.

30 García-de-la-Asunción J, Pastor E, Perez-Griera J, et al. Oxidative stress injury after on-pump cardiac surgery: effects of aortic cross-clamp time and type of surgery. Red Rep. 2013;18:193-9.
 


Submitted date:
12/03/2019

Accepted date:
06/26/2021

61080328a95395453947f585 rba Articles

Braz J Anesthesiol

Share this page
Page Sections