Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1016/j.bjane.2020.06.016
Brazilian Journal of Anesthesiology
Clinical Research

S100B level and cognitive dysfunction after robotic-assisted laparoscopic radical prostatectomy procedures: a prospective observational study

Nível de S100B e disfunção cognitiva após prostatectomia radical laparoscópica assistida por robô: estudo observacional prospectivo

Nilgun Kavrut Ozturk, Ali Sait Kavakli, Ulku Arslan, Guzin Aykal, Murat Savaş

Downloads: 2
Views: 757

Abstract

Background
The present study investigated the association between Postoperative Cognitive Dysfunction (POCD) and increased serum S100B level after Robotic-Assisted Laparoscopic Radical Prostatectomy (RALRP).

Methods
The study included 82 consecutive patients who underwent RALRP. Serum S100B levels were determined preoperatively, after anesthesia induction, and at 30 minutes and 24 hours postoperatively. Cognitive function was assessed using neuropsychological testing preoperatively and at 7 days and 3 months postoperatively.

Results
Twenty-four patients (29%) exhibited POCD 7 days after surgery, and 9 (11%) at 3 months after surgery. Serum S100B levels were significantly increased at postoperative 30 minutes and 24 hours in patients displaying POCD at postoperative 7 days (p = 0.0001 for both) and 3 months (p = 0.001 for both) compared to patients without POCD. Duration of anesthesia was also significantly longer in patients with POCD at 7 days and 3 months after surgery compared with patients without POCD (p = 0.012, p = 0.001, respectively), as was duration of Trendelenburg (p = 0.025, p = 0.002, respectively). Composite Z score in tests performed on day 7 were significantly correlated with duration of Trendelenburg and duration of anesthesia (p = 0.0001 for both).

Conclusions
S100B increases after RALRP and this increase is associated with POCD development. Duration of Trendelenburg position and anesthesia contribute to the development of POCD.

Trial Registry Number
Clinicaltrials.gov (N° NCT03018522).

Keywords

S100B protein,  Postoperative cognitive dysfunction,  Robotic assisted laparoscopic radical prostatectomy

Resumo

Introdução
O presente estudo investigou a associação entre Disfunção Cognitiva Pós-Operatória (DCPO) e aumento do nível sérico de S100B após Prostatectomia Radical Laparoscópica Assistida por Robô (PRLAR).

Métodos
O estudo incluiu 82 pacientes consecutivos submetidos à PRLAR. Os níveis séricos de S100B foram determinados: no pré-operatório, após indução anestésica, e aos 30 minutos e 24 horas do pós-operatório. A função cognitiva foi avaliada com testes neuropsicológicos no pré-operatório, no 7° Dia Pós-Operatório (7DPO) e aos 3 Meses Após a Cirurgia (3MPO).

Resultados
Observamos 24 pacientes (29%) com DCPO no 7DPO e 9 pacientes com DCPO (11%) após 3 meses da cirurgia. Quando comparados com os pacientes sem DCPO, os níveis séricos de S100B estavam significantemente aumentados aos 30 minutos e às 24 horas do pós-operatório nos pacientes que apresentaram DCPO no 7DPO (p = 0,0001 para os dois momentos) e 3 mês após a cirurgia (p = 0,001 para os dois momentos) A duração anestésica também foi significantemente maior em pacientes com DCPO no 7DPO e 3 pós-operatório em comparação com pacientes sem DCPO (p = 0,012, p = 0,001, respectivamente), assim como a duração da posição de Trendelenburg (p = 0,025, p = 0,002, respectivamente). O escore Z composto nos testes realizados no 7DPO foi significantemente correlacionado com a duração da posição de Trendelenburg e a duração da anestesia (p = 0,0001 para ambos).

Conclusão
S100B aumenta após PRLAR e o aumento está associado ao desenvolvimento de DCPO. A duração anestésica e o tempo decorrido em posição de Trendelenburg contribuem para o desenvolvimento de DCPO.

Número de registro do estudo
Clinicaltrials.gov (n° NCT03018522)

Palavras-chave

S100B,  Disfunção cognitiva pós-operatória,  Prostatectomia radical laparoscópica assistida por robô

References

[1] F. Porpiglia, I. Morra, M. Lucci Chiarissi, et al. Randomised controlled trial comparing laparoscopic and robot-assisted radical prostatectomy Eur Urol., 63 (2013), pp. 606-614

[2] J.T. Moller, P. Cluitmans, L.S. Rasmussen, et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction Lancet., 351 (1998), pp. 857-861

[3] T.G. Monk, B.C. Weldon, C.W. Garvan, et al. Predictors of cognitive dysfunction after major noncardiac surgery Anesthesiology., 108 (2008), pp. 18-30

[4] E. de Tournay-Jette, G. Dupuis, L. Bherer, et al. The relationship between cerebral oxygen saturation changes and postoperative cognitive dysfunction in elderly patients after coronary artery bypass graft surgery J Cardiothorac Vasc Anesth., 25 (2011), pp. 95-104

[5] R. Lin, F. Zhang, Q. Xue, et al. Accuracy of regional cerebral oxygen saturation in predicting postoperative cognitive dysfunction after total hip arthroplasty: regional cerebral oxygen saturation predicts POCD J Arthroplasty., 28 (2013), pp. 494-497

[6] C. Ni, T. Xu, N. Li, et al. Cerebral oxygen saturation after multiple perioperative influential factors predicts the occurrence of postoperative cognitive dysfunction BMC Anesthesiol., 15 (2015), p. 156

[7] D.M. Gainsburg Anesthetic concerns for robotic-assisted laparoscopic radical prostatectomy Minerva Anestesiol., 78 (2012), pp. 596-604

[8] H. Awad, C.M. Walker, M. Shaikh, et al. Anesthetic considerations for robotic prostatectomy: a review of the literature J Clin Anesth., 24 (2012), pp. 494-504

[9] C.A. Goncalves, M.C. Leite, P. Nardin Biological and methodological features of the measurement of S100B, a putative marker of brain injury Clin Biochem., 41 (2008), pp. 755-763

[10] A. Braekhus, K. Laake, K. Engedal The Mini-Mental State Examination: identifying the most efficient variables for detecting cognitive impairment in the elderly J Am Geriatr Soc., 40 (1992), pp. 1139-1145

[11] L.S. Rasmussen, K. Larsen, P. Houx, et al. The assessment of postoperative cognitive function Acta Anaesthesiol Scand., 45 (2001), pp. 275-289

[12] J.M. Murkin, S.P. Newman, D.A. Stump, et al. Statement of consensus on assessment of neurobehavioral outcomes after cardiac surgery Ann Thorac Surg., 59 (1995), pp. 1289-1295

[13] X. Duan, T. Zhu, C. Chen, et al. Serum glial cell line-derived neurotrophic factor levels and postoperative cognitive dysfunction after surgery for rheumatic heart disease J Thorac Cardiovasc Surg., 155 (2018) 958-65 e1

[14] K.A. Gifford, J.S. Phillips, L.R. Samuels, et al. Associations between Verbal Learning Slope and Neuroimaging Markers across the Cognitive Aging Spectrum J Int Neuropsychol Soc., 21 (2015), pp. 455-467

[15] T.N. Tombaugh Trail Making Test A and B: normative data stratified by age and education Arch Clin Neuropsychol., 19 (2004), pp. 203-214

[16] J.B. Hale Analyzing digit span components for assessment of attention processes Psychoeduc Assess., 20 (2002), pp. 128-143

[17] D.Z. Kelland, R.F. Lewis Evaluation of the reliability and validity of the repeatable cognitive-perceptual-motor battery Clin Neuropsychol. (1994), p. 8

[18] T. Johnson, T. Monk, L.S. Rasmussen, et al. Postoperative cognitive dysfunction in middle-aged patients Anesthesiology., 96 (2002), pp. 1351-1357

[19] G.U. Roh, W.O. Kim, K.H. Rha, et al. Prevalence and impact of incompetence of internal jugular valve on postoperative cognitive dysfunction in elderly patients undergoing robot-assisted laparoscopic radical prostatectomy Arch Gerontol Geriatr., 64 (2016), pp. 167-171

[20] T. Rappold, A. Laflam, D. Hori, et al. Evidence of an association between brain cellular injury and cognitive decline after non-cardiac surgery Br J Anaesth., 116 (2016), pp. 83-89

[21] A. Postler, J. Neidel, K.P. Gunther, et al. Incidence of early postoperative cognitive dysfunction and other adverse events in elderly patients undergoing elective total hip replacement (THR) Arch Gerontol Geriatr., 53 (2011), pp. 328-333

[22] D. Rohan, D.J. Buggy, S. Crowley, et al. Increased incidence of postoperative cognitive dysfunction 24 hr after minor surgery in the elderly Can J Anaesth., 52 (2005), pp. 137-142

[23] C. Robba, D. Cardim, J. Donnelly, et al. Effects of pneumoperitoneum and Trendelenburg position on intracranial pressure assessed using different non-invasive methods Br J Anaesth., 117 (2016), pp. 783-791

[24] J.R. Lee, P.B. Lee, S.H. Do, et al. The effect of gynaecological laparoscopic surgery on cerebral oxygenation J Int Med Res., 34 (2006), pp. 531-536

[25] E.W. Lang, M. Kasprowicz, P. Smielewski, et al. Changes in Cerebral Partial Oxygen Pressure and Cerebrovascular Reactivity During Intracranial Pressure Plateau Waves Neurocrit Care., 23 (2015), pp. 85-91

[26] L. Tang, R. Kazan, R. Taddei, et al. Reduced cerebral oxygen saturation during thoracic surgery predicts early postoperative cognitive dysfunction Br J Anaesth., 108 (2012), pp. 623-629

[27] Z. Song, P. Fu, M. Chen, et al. Association of CT perfusion and postoperative cognitive dysfunction after off-pump coronary artery bypass grafting Neurol Res., 38 (2016), pp. 533-537

[28] A. Doe, M. Kumagai, Y. Tamura, et al. A comparative analysis of the effects of sevoflurane and propofol on cerebral oxygenation during steep Trendelenburg position and pneumoperitoneum for robotic-assisted laparoscopic prostatectomy J Anesth., 30 (2016), pp. 949-955

[29] P. Schramm, A.H. Treiber, M. Berres, et al. Time course of cerebrovascular autoregulation during extreme Trendelenburg position for robotic-assisted prostatic surgery Anaesthesia., 69 (2014), pp. 58-63

[30] A.F. Kalmar, L. Foubert, J.F. Hendrickx, et al. Influence of steep Trendelenburg position and CO(2) pneumoperitoneum on cardiovascular, cerebrovascular, and respiratory homeostasis during robotic prostatectomy Br J Anaesth., 104 (2010), pp. 433-439

[31] C.D. Hanning Postoperative cognitive dysfunction Br J Anaesth., 95 (2005), pp. 82-87

[32] J. Canet, J. Raeder, L.S. Rasmussen, et al. Cognitive dysfunction after minor surgery in the elderly Acta Anaesthesiol Scand., 47 (2003), pp. 1204-1210

[33] F.P. Silva, A.P. Schmidt, L.S. Valentin, et al. S100B protein and neuron-specific enolase as predictors of cognitive dysfunction after coronary artery bypass graft surgery: A prospective observational study Eur J Anaesthesiol., 33 (2016), pp. 681-689
 
[34] Y.C. Li, C.H. Xi, Y.F. An, et al. Perioperative inflammatory response and protein S-100beta concentrations - relationship with post-operative cognitive dysfunction in elderly patients Acta Anaesthesiol Scand., 56 (2012), pp. 595-600

[35] L. Peng, L. Xu, W. Ouyang Role of peripheral inflammatory markers in postoperative cognitive dysfunction (POCD): a meta-analysis PLoS One., 8 (2013), p. e79624

[36] U. Linstedt, O. Meyer, P. Kropp, et al. Serum concentration of S-100 protein in assessment of cognitive dysfunction after general anesthesia in different types of surgery Acta Anaesthesiol Scand., 46 (2002), pp. 384-389

5f9318720e8825b67a485d91 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections