Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1016/j.bjane.2018.09.005
Brazilian Journal of Anesthesiology
Scientific Article

Dexmedetomidine preconditioning protects against lung injury in hemorrhagic shock rats

Pré-condicionamento com dexmedetomidina protege contra lesão pulmonar em ratos com choque hemorrágico

Lei Zhang; Wei Wang; Qian-Qian Qiao; Xue-Shan Bu; Ling-Hua Tang; Yi-Fan Jia; Zhong-Yuan Xia; Qing-Tao Meng

Downloads: 0
Views: 623

Abstract

Abstract Background and objectives: Dexmedetomidine has demonstrated protective effects against lung injury in vitro. Here, we investigated whether dexmedetomidine preconditioning protected against lung injury in hemorrhagic shock rats. Methods: Male Sprague-Dawley rats were randomly divided into four groups (n = 8): control group, hemorrhagic shock group, 5 ug.kg-1 dexmedetomidine (DEX1) group, and 10 ug.kg-1 dexmedetomidine (DEX2) group. Saline or dexmedetomidine were administered over 20 min. 30 min after injection, hemorrhage was initiated in the hemorrhagic shock, DEX1 and DEX2 group. Four hours after resuscitation, protein and cellular content in bronchoalveolar lavage fluid, and the lung histopathology were measured. The malondialdehyde, superoxide dismutase, Bcl-2, Bax and caspase-3 were also tested in the lung tissue. Results: Compare with hemorrhagic shock group, 5 ug.kg-1 dexmedetomidine pretreatment reduced the apoptosis (2.25 ± 0.24 vs. 4.12 ± 0.42%, p < 0.05), histological score (1.06 ± 0.12 vs. 1.68 ± 0.15, p < 0.05) and protein (1.92 ± 0.38 vs. 3.95 ± 0.42 mg.mL-1, p < 0.05) and WBC (0.42 ± 0.11 vs. 0.92 ± 0.13 × 109/L, p < 0.05) in bronchoalveolar lavage fluid. Which is correlated with increased superoxide dismutase activity (8.35 ± 0.68 vs. 4.73 ± 0.44 U.mg-1 protein, p < 0.05) and decreased malondialdehyde (2.18 ± 0.19 vs. 3.28 ± 0.27 nmoL.mg-1 protein, p < 0.05). Dexmedetomidine preconditioning also increased the Bcl-2 level (0.55 ± 0.04 vs. 0.34 ± 0.05, p < 0.05) and decreased the level of Bax (0.46 ± 0.03 vs. 0.68 ± 0.04, p < 0.05), caspase-3 (0.49 ± 0.03 vs. 0.69 ± 0.04, p < 0.05). However, we did not observe any difference between the DEX1 and DEX2 groups for these (p > 0.05). Conclusion: Dexmedetomidine preconditioning has a protective effect against lung injury caused by hemorrhagic shock in rats. The potential mechanisms involved are the inhibition of cell death and improvement of antioxidation. But did not show a dose-dependent effect.

Keywords

Dexmedetomidine, Hemorrhagic shock, Preconditioning, Lung injury, Rat

Resumo

Resumo Justificativa e objetivos: Dexmedetomidina demonstrou efeitos protetores contra a lesão pulmonar in vitro. Neste estudo, investigamos se o pré-condicionamento com dexmedetomidina protege contra a lesão pulmonar em ratos com choque hemorrágico. Métodos: Ratos machos, Sprague-Dawley, foram aleatoriamente divididos em quatro grupos (n = 8): grupo controle, grupo com choque hemorrágico, grupo com 5 µg.kg-1 de dexmedetomidina (DEX1) e grupo com 10 µg.kg-1 de dexmedetomidina (DEX2). Solução salina ou dexmedetomidina foi administrada durante 20 minutos. Trinta minutos após a injeção, a hemorragia foi iniciada nos grupos choque hemorrágico, DEX1 e DEX2. Quatro horas após a ressuscitação, a proteína e o conteúdo celular no lavado broncoalveolar e a histopatologia pulmonar foram medidos. Malondialdeído, superóxido dismutase, Bcl-2, Bax e caspase-3 também foram testados no tecido pulmonar. Resultados: Na comparação com o grupo choque hemorrágico, o pré-tratamento com 5 ug.kg-1 de dexmedetomidina reduziu a apoptose (2,25 ± 0,24 vs. 4,12 ± 0,42%, p < 0,05), escore histológico (1,06 ± 0,12 vs. 1,68 ± 0,15, p < 0,05) e proteína (1,92 ± 0,38 vs. 3,95 ± 0,42 mg.mL-1, p < 0,05) e leucócitos (0,42 ± 0,11 vs. 0,92 ± 0,13 × 109/L, p < 0,05) no lavado broncoalveolar; o que está correlacionado com o aumento da atividade da superóxido dismutase (8,35 ± 0,68 vs. 4,73 ± 0,44 U.mg-1 de proteína, p < 0,05) e diminuição do malondialdeído (2,18 ± 0,19 vs. 3,28 ± 0,27 nmoL.mg-1 de proteína, p < 0,05). O pré-condicionamento com dexmedetomidina também aumentou o nível de Bcl-2 (0,55 ± 0,04 vs. 0,34 ± 0,05, p < 0,05) e diminuiu o nível de Bax (0,46 ± 0,03 vs. 0,68 ± 0,04, p < 0,05), caspase-3 (0,49 ± 0,03 vs. 0,69 ± 0,04, p < 0,05). No entanto, não houve diferença entre os grupos DEX1 e DEX2 para essas proteínas (p > 0,05). Conclusão: O pré-condicionamento com dexmedetomidina tem um efeito protetor contra a lesão pulmonar causada por choque hemorrágico em ratos. Os potenciais mecanismos envolvidos são a inibição da morte celular e a melhora da antioxidação. Porém, não mostrou um efeito dose-dependente.

Palavras-chave

Dexmedetomidina, Choque hemorrágico, Pré-condicionamento, Lesão pulmonar, Rato

References

Eser O, Kalkan E, Cosar M. The effect of aprotinin on brain ischemic-reperfusion injury after hemorrhagic shock in rats: an experimental study. J Trauma. 2007;63:373-8.

Curry N, Hopewell S, Doree C. The acute management of trauma hemorrhage: a systematic review of randomized controlled trials. Crit Care. 2011;15:R92.

Xiang M, Fan J, Fan J. Association of Toll-like receptor signaling and reactive oxygen species: a potential therapeutic target for posttrauma acute lung injury. Mediators Inflamm. 2010:2010.

Matthay MA, Zemans RL. The acute respiratory distress syndrome: pathogenesis and treatment. Annu Rev Pathol. 2011;6:147-63.

Hu X, Yang Z, Yang M. Remote ischemic preconditioning mitigates myocardial and neurological dysfunction via K(ATP) channel activation in a rat model of hemorrhagic shock. Shock. 2014;42:228-33.

Wang H, Chen H, Wang L. Acute hyperglycemia prevents dexmedetomidine-induced preconditioning against renal ischemia-reperfusion injury. Acta Cir Bras. 2014;29:812-8.

Zhang L, Zhou XJ, Zhan LY. Dexmedetomidine preconditioning protects against lipopolysaccharides-induced injury in the human alveolar epithelial cells. Rev Bras Anestesiol. 2017;67:600-6.

Su ZY, Ye Q, Liu XB. Dexmedetomidine mitigates isoflurane-induced neurodegeneration in fetal rats during the second trimester of pregnancy. Neural Regen Res. 2017;12:1329-37.

Zhang L, Luo N, Liu J. Emulsified isoflurane preconditioning protects against liver and lung injury in rat model of hemorrhagic shock. J Surg Res. 2011;171:783-90.

Oliva J. Proteasome and organs ischemia-reperfusion injury. Int J Mol Sci. 2017:19.

Lenaz G. Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta. 1998;1366:53-67.

Benov L, Batinic-Haberle I. A manganese porphyrin suppresses oxidative stress and extends the life span of streptozotocin-diabetic rats. Free Radic Res. 2005;39:81-8.

Pisarenko O, Timotin A, Sidorova M. Cardioprotective properties of N-terminal galanin fragment (2–15) in experimental ischemia/reperfusion injury. Oncotarget. 2017;8:101659-71.

Wicha P, Tocharus J, Janyou A. Hexahydrocurcumin protects against cerebral ischemia/reperfusion injury, attenuates inflammation, and improves antioxidant defenses in a rat stroke model. PLOS ONE. 2017;12.

Yousefi H, Ahmadiasl N, Alihemmati A. Effect of renal ischemia-reperfusion on lung injury and inflammatory responses in male rat. Ira J Basic Med Sci. 2014;17:802-7.

Zhang C, Guo Z, Liu H. Influence of levosimendan postconditioning on apoptosis of rat lung cells in a model of ischemia-reperfusion injury. PLOS ONE. 2015;10.

Khan I, Bahuguna A, Kumar P. In vitro and in vivo antitumor potential of carvacrol nanoemulsion against human lung adenocarcinoma A549 cells via mitochondrial mediated apoptosis. Sci Rep. 2018;8:144.

Haunstetter A, Izumo S. Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res. 1998;82:1111-29.

Tian Y, Du YY, Shang H. Calenduloside e analogues protecting H9c2 cardiomyocytes against H2O2-induced apoptosis: design, synthesis and biological evaluation. Front Pharmacol. 2017;8:862.

Wolter KG, Hsu YT, Smith CL. Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol. 1997;139:1281-92.

Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407:770-6.

Veena VK, Popavath RN, Kennedy K. In vitro antiproliferative, pro-apoptotic, antimetastatic and anti-inflammatory potential of 2,4-diacetylphloroglucinol (DAPG) by Pseudomonas aeruginosa strain FP10. Apoptosis. 2015;20:1281-95.

Lee US, Ban JO, Yeon ET. Growth inhibitory effect of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate through induction of apoptotic cell death by increasing dr3 expression in human lung cancer cells. Biomol Ther. 2012;20:538-43.

van Heerde WL, Robert-Offerman S, Dumont E. Markers of apoptosis in cardiovascular tissues: focus on Annexin V. Cardiovasc Res. 2000;45:549-59.

Bagcik E, Ozkardesler S, Boztas N. Effects of dexmedetomidine in conjunction with remote ischemic preconditioning on renal ischemia-reperfusion injury in rats. Rev Bras Anestesiol. 2014;64:382-90.

5dcb02e80e88256b5303b87a rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections