Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1016/j.bjane.2018.07.003
Brazilian Journal of Anesthesiology
Scientific Article

The effect of anesthetic preconditioning with sevoflurane on intracellular signal-transduction pathways and apoptosis, in a lung autotransplant experimental model

O efeito do pré-condicionamento anestésico com sevoflurano sobre as vias de transdução de sinal intracelular e a apoptose, em modelo experimental de autotransplante pulmonar

Ignacio Garutti; Francisco Gonzalez-Moraga; Guillermo Sanchez-Pedrosa; Javier Casanova; Beatriz Martin-Piñeiro; Lisa Rancan; Carlos Simón; Elena Vara

Downloads: 0
Views: 654

Abstract

Abstract Background: Anesthetic pre-conditioning attenuates inflammatory response during ischemia-reperfusion lung injury. The molecular mechanisms to explain it are not fully understood. The aim of our investigation was to analyze the molecular mechanism that explain the anti-inflammatory effects of anesthetic pre-conditioning with sevoflurane focusing on its effects on MAPKs (mitogen-activated protein kinases), NF-κB (nuclear factor kappa beta) pathways, and apoptosis in an experimental lung autotransplant model. Methods: Twenty large white pigs undergoing pneumonectomy plus lung autotransplant were divided into two 10-member groups on the basis of the anesthetic received (propofol or sevoflurane). Anesthetic pre-conditioning group received sevoflurane 3% after anesthesia induction and it stopped when one-lung ventilation get started. Control group did not receive sevoflurane in any moment during the whole study period. Intracellular signal-transduction pathways (MAPK family), transcription factor (NF-κB), and apoptosis (caspases 3 and 9) were analyzed during experiment. Results: Pigs that received anesthetic pre-conditioning with sevoflurane have shown significant lower values of MAPK-p38, MAPK-P-p38, JNK (c-Jun N-terminal kinases), NF-κB p50 intranuclear, and caspases (p < 0.05) than pigs anesthetized with intravenous propofol. Conclusions: Lung protection of anesthetic pre-conditioning with sevoflurane during experimental lung autotransplant is, at least, partially associated with MAPKs and NF κB pathways attenuation, and antiapoptotic effects.

Keywords

Lung transplantation, Sevoflurane, Inflammation, Apoptosis

Resumo

Resumo Justificativa: O pré-condicionamento anestésico atenua a resposta inflamatória durante a lesão de isquemia-reperfusão do pulmão. Os mecanismos moleculares para explicá-lo não são totalmente compreendidos. O objetivo de nossa investigação foi analisar o mecanismo molecular que explica os efeitos anti-inflamatórios do pré-condicionamento anestésico com sevoflurano, enfocar seus efeitos sobre as proteínas quinases ativadas por mitógenos (MAPKs), o fator nuclear kappa beta (NF-κB) e a apoptose em modelo experimental de autotransplante pulmonar. Métodos: Vinte porcos Large White submetidos à pneumonectomia e autoimplante de pulmão foram divididos em dois grupos de 10 membros com base no anestésico recebido (propofol ou sevoflurano). O grupo de pré-condicionamento anestésico recebeu sevoflurano a 3% após a indução da anestesia, que foi descontinuado quando a ventilação monopulmonar foi iniciada. O grupo controle não recebeu sevoflurano em qualquer momento durante todo o período do estudo. As vias de transdução de sinal intracelular (família MAPK), o fator de transcrição (NF-κB) e a apoptose (caspases 3 e 9) foram analisados durante o experimento. Resultados: Os suínos que receberam pré-condicionamento anestésico com sevoflurano apresentaram valores mais baixos de MAPK-p38, MAPK-P-p38, c-Jun N-terminal quinases (JNK), NF-κB p50 intranuclear e caspases (p < 0,05) do que os suínos anestesiados com propofol intravenoso. Conclusões: A proteção pulmonar do pré-condicionamento anestésico com sevoflurano durante o autotransplante pulmonar experimental está, pelo menos, parcialmente associada à atenuação das vias de MAPKs e NF κB e aos efeitos antiapoptóticos.

Palavras-chave

Transplante pulmonar, Sevoflurano, Inflamação, Apoptose

References

De Perrot M, Liu M, Waddell TK. Ischemia-reperfusion-induced lung injury. Am J Respir Crit Care Med. 2003;167:490-511.

Imai M, Kon S, Inaba H. Effects of halothane, isoflurane and sevoflurane on ischemia-reperfusion injury in the perfused liver of fasted rats. Acta Anaesthesiol Scand. 1996;40:1242-8.

Kong HY, Zhu SM, Wang LQ. Sevoflurane protects against acute kidney injury in a small-size liver transplantation model. Am J Nephrol. 2010;32:347-55.

Yao YT, Fang NX, Shi CX. Sevoflurane postconditioning protects isolated rat hearts against ischemia-reperfusion injury. Chin Med J (Engl). 2010;123:1320-8.

Ding Q, Wang Q, Deng J. Sevoflurane preconditioning induces rapid ischemic tolerance against spinal cord ischemia/reperfusion through activation of extracellular signal-regulated kinase in rabbits. Anesth Analg. 2009;109:1263-72.

Codaccioni JL, Velly LJ, Moubarik C. Sevoflurane preconditioning against focal cerebral ischemia: inhibition of apoptosis in the face of transient improvement of neurological outcome. Anesthesiology. 2009;110:1271-8.

Casanova J, Garutti I, Simón C. Effects of anesthetic preconditioning with sevoflurane in an experimental lung autotransplant model in pigs. Anesth Analg. 2011;113:742-8.

Semenza GL. Cellular and molecular dissection of reperfusion injury: ROS within and without. Circ Res. 2000;86:117-8.

Bueno OF, Molkentin JD. Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ Res. 2002;91:776-81.

Lips DJ, Purcell NH, Kaiser RA. MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation. 2004;109:1938-41.

Zhong C, Zhou Y, Liu H. Nuclear factor kappa B and anesthetic preconditioning during myocardial ischemia-reperfusion. Anesthesiology. 2004;100:540-6.

den Hengst WA, Gielis JF, Lin JY. Lung ischemia-reperfusion injury: a molecular and clinical view on a complex pathophysiological process. Am J Physiol Heart Circ Physiol. 2010;299:H1283-99.

O'Neill LA. Targeting signal transduction as a strategy to treat inflammatory diseases. Nat Rev Drug Discov. 2006;5:549-63.

Song L, Li D, Wang J. Effects of p38 mitogen-activated protein kinase on lung ischemia-reperfusion injury in diabetic rats. J Surg Res. 2017;216:9-17.

Sakiyama S, Hamilton J, Han B. Activation of mitogen-activated protein kinases during human lung transplantation. J Heart Lung Transplant. 2005;24:2079-85.

Yamamoto S, Yamane M, Yoshida O. Activations of mitogen-activated protein kinases and regulation of their downstream molecules after rat lung transplantation from donors after cardiac death. Transplant Proc. 2011;43:3628-33.

Ishii M, Suzuki Y, Takeshita K. Inhibition of c-Jun NH2-terminal kinase activity improves ischemia/reperfusion injury in rat lungs. J Immunol. 2004;172:2569-77.

Wolf PS, Merry HE, Farivar AS. Stress-activated protein kinase inhibition to ameliorate lung ischemia reperfusion injury. J Thorac Cardiovasc Surg. 2008;135:656-65.

Hashimoto N, Takeyoshi I, Yoshinari D. Effects of a p-38 mitogen-activated protein kinase inhibitor as an additive to Euro Collins solution on reperfusion injury in canine lung transplantation. Transplantation. 2002;74:320-6.

Kawashima Y, Takeyoshi I, Otani Y. FR167653 attenuates ischemia and reperfusion injury of the rat lung with suppressing p38 mitogenactivated protein kinase. J Heart Lung Transplant. 2001;20:568-74.

Chen HE, Ma YC, He JB. Ischemic postconditioning attenuates pneumocyte apoptosis after lung ischemia/reperfusion injury via inactivation of p38 MAPK. Zhongguo Ying Yong Sheng LiXue Za Zhi. 2014;30:251-6.

Yu J, Mizumoto K, Tokinaga Y. The inhibitory effects of sevoflurane on angiotensin II-induced, p44/42 mitogen-activated protein kinase-mediated contraction of rat aortic smooth muscle. Anesth Analg. 2005;101:315-21.

Wang H, Lu S, Yu Q. Sevoflurane preconditioning confers neuroprotection via anti-inflammatory effects. Front Biosci. 2011;3:604-15.

Sun SX, Ge BX, Miao CH. Effects of preconditioning with sevoflurane on TNF-α-induced permeability and activation of p38 MAPK in rat pulmonary microvascular endothelial cells. Cell Biochem Biophys. 2011;61:123-9.

Oshumi A, Marseu K, Slinger P. Sevoflurane attenuates ischemia-reperfusion injury in a rat lung transplantation model. Ann Thorac Surg. 2017;103:1578-86.

Chen S, Lotz C, Roewer N. Comparison of volatile anesthetic-induced preconditioning in cardiac and cerebral system: molecular mechanisms and clinical aspects. Eur J Med Res. 2018;23:10.

Zaugg M, Lucchinetti E, Spahn DR. Volatile anesthetics mimic cardiac preconditioning by priming the activation of mitochondrial K (ATP) channels via multiple signaling pathways. Anesthesiology. 2002;97:4-14.

Tanaka K, Ludwig LM, Kersten JR. Mechanisms of cardioprotection by volatile anesthetics. Anesthesiology. 2004;100:707-21.

Xu Z, Ji X, Boysen PG. Exogenous nitric oxide generates ROS and induces cardioprotection: involvement of PKG, mitochondrial KATP channels, and ERK. Am J Physiol Heart Circ Physiol. 2004;286:H1433-40.

Grossini E, Molinari C, Caimmi PP. Levosimendan induces NO production through p38 MAPK, ERK and Akt in porcine coronary endothelial cells: role for mitochondrial KATP channel. Br J Pharmacol. 2009;156:250-61.

Carter AB, Knudtson KL, Monick MM. The p-38 mitogen-activated protein kinase is required for NF-kappaB-dependent gene expression: the role of TATA-binding protein (TBP). J Biol Chem. 1999;274:30858-63.

Saccani S, Pantano S, Natoli G. p38-Dependent marking of inflammatory genes for increased NF-kappa B recruitment. Nat Immunol. 2002;3:69-75.

Mikrou A, Kalimeris KA, Lilis I. Molecular studies of the immunological effect of the sevoflurane preconditioning in the liver and lung in a rat model of liver ischemia/reperfusion injury. Mol Immunol. 2016;72:1-8.

Susnow N, Zeng L, Margineantu D. Bcl-2 family proteins as regulators of oxidative stress. Semin Cancer Biol. 2009;19:42-9.

Öllinger R, Pratschke J. Role of heme oxygenase-1 in transplantation. Transpl Int. 2010;23:1071-81.

Wu SY, Li MH, Ko FC. Protective effect of hypercapnic acidosis in ischemia-reperfusion lung injury is attributable to upregulation of heme oxygenase-1. PLoS ONE. 2013;10:1-13.

Stammberger U, Gaspert A, Hillinger S. Apoptosis induced by ischemia and reperfusion in experimental lung transplantation. Ann Thorac Surg. 2000;69:1532-6.

Ng CS, Wan S, Yim AP. Pulmonary ischaemia-reperfusion injury: role of apoptosis. Eur Respir J. 2005;25:356-63.

Fischer S, Maclean AA, Liu M. Dynamic changes in apoptotic and necrotic cell death correlate with severity of ischemia-reperfusion injury in lung transplantation. Am J Respir Crit Care Med. 2000;162:1932-9.

Quadri SM, Segall L, De Perrot M. Caspase inhibition improves ischemia-reperfusion injury after lung transplantation. Am J Transp. 2005;5:292-9.

Wang L, Ye Y, Su HB. The anesthetic agent sevoflurane attenuates pulmonary acute lung injury by modulating apoptotic pathways. Braz J Med Biol Res. 2017;50:1-8.

Yon JH, Daniel-Johnson J, Carter LB. Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways. Neuroscience. 2005;135:815-27.

Kalimeris K, Christodoulaki K, Karakitsos P. Influence of propofol and volatile anaesthetics on the inflammatory response in the ventilated lung. Acta Anaesthesiol Scand. 2011;55:740-8.

Inamura Y, Miyamae M, Sugioka S. Sevoflurane postconditioning prevents activation of caspase 3 and 9 through antiapoptotic signaling after myocardial ischemia-reperfusion. J Anesth. 2010;24:215-24.

Istaphanous GK, Howard J, Nan X. Comparison of the neuroapoptotic properties of equipotent anesthetic concentrations of desflurane, isoflurane, or sevoflurane in neonatal mice. Anesthesiology. 2011;114:578-87.

Lu X, Moore PG, Liu H. Phosphorylation of ARC is a critical element in the antiapoptotic effect of anesthetic preconditioning. Anesth Analg. 2011;112:525-31.

Zhong C, Zhou Y, Liu H. and anesthetic preconditioning during myocardial ischemia-reperfusion. Anesthesiology. 2004;100:540-6.

Zheng S, Zuo Z. Isoflurane preconditioning induces neuroprotection against ischemia via activation of p-38 mitogen activated protein kinases. Mol Pharmacol. 2004;65:1172-80.

5dcafab70e8825593103b87a rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections