Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1016/j.bjane.2017.11.008
Brazilian Journal of Anesthesiology
Scientific Article

Severity of disease scoring systems and mortality after non-cardiac surgery

Sistemas de classificação da gravidade da doença e mortalidade após cirurgia não cardíaca

Pedro Videira Reis; Gabriela Sousa; Ana Martins Lopes; Ana Vera Costa; Alice Santos; Fernando José Abelha

Downloads: 0
Views: 940

Abstract

Abstract Background: Mortality after surgery is frequent and severity of disease scoring systems are used for prediction. Our aim was to evaluate predictors for mortality after non-cardiac surgery. Methods: Adult patients admitted at our surgical intensive care unit between January 2006 and July 2013 was included. Univariate analysis was carried using Mann-Whitney, Chi-square or Fisher's exact test. Logistic regression was performed to assess independent factors with calculation of odds ratio and 95% confidence interval (95% CI). Results: 4398 patients were included. Mortality was 1.4% in surgical intensive care unit and 7.4% during hospital stay. Independent predictors of mortality in surgical intensive care unit were APACHE II (OR = 1.24); emergent surgery (OR = 4.10), serum sodium (OR = 1.06) and FiO2 at admission (OR = 14.31). Serum bicarbonate at admission (OR = 0.89) was considered a protective factor. Independent predictors of hospital mortality were age (OR = 1.02), APACHE II (OR = 1.09), emergency surgery (OR = 1.82), high-risk surgery (OR = 1.61), FiO2 at admission (OR = 1.02), postoperative acute renal failure (OR = 1.96), heart rate (OR = 1.01) and serum sodium (OR = 1.04). Dying patients had higher scores in severity of disease scoring systems and longer surgical intensive care unit stay. Conclusion: Some factors influenced both surgical intensive care unit and hospital mortality.

Keywords

Postoperative mortality, Severity of disease scoring systems, APACHE II, SAPS II, Surgical intensive care unit, Non-cardiac surgery

Resumo

Resumo Justificativa: A mortalidade após cirurgia é frequente e os sistemas de classificação da gravidade da doença são usados para a previsão. Nosso objetivo foi avaliar os preditivos de mortalidade após cirurgia não cardíaca. Métodos: Os pacientes adultos admitidos em nossa unidade de terapia intensiva cirúrgica entre janeiro de 2006 e julho de 2013 foram incluídos. Análise univariada foi feita com o teste de Mann-Whitney, qui-quadrado ou exato de Fisher. Regressão logística foi feita para avaliar fatores independentes com cálculo de razão de chances (odds ratio - OR) e intervalo de confiança de 95% (IC 95%). Resultados: No total, 4.398 pacientes foram incluídos. A mortalidade foi de 1,4% na unidade de terapia intensiva cirúrgica e de 7,4% durante a internação hospitalar. Os preditivos independentes de mortalidade na unidade de terapia intensiva cirúrgica foram APACHE II (OR = 1,24); cirurgia de emergência (OR = 4,10), sódio sérico (OR = 1,06) e FiO2 na admissão (OR = 14,31). Bicarbonato sérico na admissão (OR = 0,89) foi considerado um fator protetor. Os preditivos independentes de mortalidade hospitalar foram idade (OR = 1,02), APACHE II (OR = 1,09), cirurgia de emergência (OR = 1,82), cirurgia de alto risco (OR = 1,61), FiO2 na admissão (OR = 1,02), insuficiência renal aguda no pós-operatório (OR = 1,96), frequência cardíaca (OR = 1,01) e sódio sérico (OR = 1,04). Os pacientes moribundos apresentaram escores mais altos de gravidade da doença nos sistemas de classificação e mais tempo de permanência em unidade de terapia intensiva cirúrgica. Conclusão: Alguns fatores tiveram influencia sobre a mortalidade tanto hospitalar quanto na unidade de terapia intensiva cirúrgica.

Palavras-chave

Mortalidade após cirurgia, Sistemas de classificação da gravidade da doença, APACHE II, SAPS II, Unidade de terapia intensiva cirúrgica, Cirurgia não cardíaca

References

Weiser TG, Regenbogen SE, Thompson KD. An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet. 2008;372:139-44.

Monk TG, Saini V, Weldon BC. Anesthetic management and one-year mortality after noncardiac surgery. Anesth Analg. 2005;100:4-10.

Khuri SF, Henderson WG, DePalma RG. Determinants of long-term survival after major surgery and the adverse effect of postoperative complications. Ann Surg. 2005;242:326-41.

Ghaferi AA, Birkmeyer JD, Dimick JB. Variation in hospital mortality associated with inpatient surgery. N Engl J Med. 2009;361:1368-75.

Pearse RM, Harrison DA, James P. Identification and characterisation of the high-risk surgical population in the United Kingdom. Crit Care. 2006;10:R81.

Abelha FJ, Castro MA, Landeiro NM. Mortality and length of stay in a surgical intensive care unit. Rev Bras Anestesiol. 2006;56:34-45.

Arbous MS, Grobbee DE, van Kleef JW. Mortality associated with anaesthesia: a qualitative analysis to identify risk factors. Anaesthesia. 2001;56:1141-53.

Hall BL, Hamilton BH, Richards K. Does surgical quality improve in the American College of Surgeons National Surgical Quality Improvement Program: an evaluation of all participating hospitals. Ann Surg. 2009;250:363-76.

Leung JM, Dzankic S. Relative importance of preoperative health status versus intraoperative factors in predicting postoperative adverse outcomes in geriatric surgical patients. J Am Geriatr Soc. 2001;49:1080-5.

Kable AK, Gibberd RW, Spigelman AD. Adverse events in surgical patients in Australia. Int J Qual Health Care. 2002;14:269-76.

Weissman C. The enhanced postoperative care system. J Clin Anesth. 2005;17:314-22.

Simpson JC, Moonesinghe SR. Introduction to the postanaesthetic care unit. Perioper Med (Lond). 2013;2:5.

Knaus WA, Draper EA, Wagner DP. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818-29.

Vincent JL, Moreno R. Clinical review: scoring systems in the critically ill. Crit Care. 2010;14:207.

Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957-63.

Sirio CA, Shepardson LB, Rotondi AJ. Community-wide assessment of intensive care outcomes using a physiologically based prognostic measure: implications for critical care delivery from Cleveland Health Quality Choice. Chest. 1999;115:793-801.

Jarman B, Pieter D, van der Veen AA. The hospital standardised mortality ratio: a powerful tool for Dutch hospitals to assess their quality of care?. Qual Saf Health Care. 2010;19:9-13.

Breslow MJ, Badawi O. Severity scoring in the critically ill: Part 2: maximizing value from outcome prediction scoring systems. Chest. 2012;141:518-27.

Lilford R, Pronovost P. Using hospital mortality rates to judge hospital performance: a bad idea that just won't go away. BMJ. 2010;340:c2016.

Mohammed MA, Deeks JJ, Girling A. Evidence of methodological bias in hospital standardised mortality ratios: retrospective database study of English hospitals. BMJ. 2009;338:b780.

Lee TH, Marcantonio ER, Mangione CM. Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. Circulation. 1999;100:1043-9.

Kristensen SD, Knuuti J, Saraste A. ESC/ESA Guidelines on non-cardiac surgery: cardiovascular assessment and management: The Joint Task Force on non-cardiac surgery: cardiovascular assessment and management of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA). Eur J Anaesthesiol. 2014;2014.

Halpern NA, Pastores SM, Greenstein RJ. Critical care medicine in the United States 1985-2000: an analysis of bed numbers, use, and costs. Crit Care Med. 2004;32:1254-9.

Abelha FJ, Botelho M, Fernandes V. Quality of life and mortality assessment in patients with major cardiac events in the postoperative period. Rev Bras Anestesiol. 2010;60:268-84.

Maia PC, Abelha FJ. Predictors of major postoperative cardiac complications in a surgical ICU. Rev Port Cardiol. 2008;27:321-8.

Lobo SM, Rezende E, Knibel MF. Early determinants of death due to multiple organ failure after noncardiac surgery in high-risk patients. Anesth Analg. 2011;112:877-83.

Abelha FJ, Luis C, Veiga D. Outcome and quality of life in patients with postoperative delirium during an ICU stay following major surgery. Crit Care. 2013;17:R257.

Abelha FJ, Botelho M, Fernandes V. Determinants of postoperative acute kidney injury. Crit Care. 2009;13:R79.

Rhodes A, Moreno RP, Metnitz B. Epidemiology and outcome following post-surgical admission to critical care. Intensive Care Med. 2011;37:1466-72.

Sakr Y, Vincent JL, Ruokonen E. Sepsis and organ system failure are major determinants of post-intensive care unit mortality. J Crit Care. 2008;23:475-83.

Xara D, Santos A, Abelha F. Adverse respiratory events in a post-anesthesia care unit. Arch Bronconeumol. 2015;51:69-75.

Elias AC, Matsuo T, Grion CM. Incidence and risk factors for sepsis in surgical patients: a cohort study. J Crit Care. 2012;27:159-66.

Devereaux PJ, Chan MT, Alonso-Coello P. Association between postoperative troponin levels and 30-day mortality among patients undergoing noncardiac surgery. JAMA. 2012;307:2295-3304.

Weissman C, Klein N. The importance of differentiating between elective and emergency postoperative critical care patients. J Crit Care. 2008;23:308-16.

Choi WI, Shehu E, Lim SY. Markers of poor outcome in patients with acute hypoxemic respiratory failure. J Crit Care. 2014;29:797-802.

Cooke CR, Kahn JM, Caldwell E. Predictors of hospital mortality in a population-based cohort of patients with acute lung injury. Crit Care Med. 2008;36:1412-20.

de Jonge E, Peelen L, Keijzers PJ. Association between administered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients. Crit Care. 2008;12:R156.

Chahoud J, Semaan A, Almoosa KF. Ventilator-associated events prevention, learning lessons from the past: a systematic review. Heart Lung. 2015;44:251-9.

Kallet RH, Matthay MA. Hyperoxic acute lung injury. Respir Care. 2013;58:123-41.

Darmon M, Diconne E, Souweine B. Prognostic consequences of borderline dysnatremia: pay attention to minimal serum sodium change. Crit Care. 2013;17:R12.

Funk GC, Lindner G, Druml W. Incidence and prognosis of dysnatremias present on ICU admission. Intensive Care Med. 2010;36:304-11.

Darmon M, Timsit JF, Francais A. Association between hypernatraemia acquired in the ICU and mortality: a cohort study. Nephrol Dial Transplant. 2010;25:2510-5.

Waite MD, Fuhrman SA, Badawi O. Intensive care unit-acquired hypernatremia is an independent predictor of increased mortality and length of stay. J Crit Care. 2013;28:405-12.

Stelfox HT, Ahmed SB, Khandwala F. The epidemiology of intensive care unit-acquired hyponatraemia and hypernatraemia in medical-surgical intensive care units. Crit Care. 2008;12:R162.

Lindner G, Funk GC. Hypernatremia in critically ill patients. J Crit Care. 2013;28.

Martin MJ, FitzSullivan E, Salim A. Use of serum bicarbonate measurement in place of arterial base deficit in the surgical intensive care unit. Arch Surg. 2005;140:745-51.

Gunnerson KJ, Saul M, He S. Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients. Crit Care. 2006;10:R22.

Surbatovic M, Radakovic S, Jevtic M. Predictive value of serum bicarbonate, arterial base deficit/excess and SAPS III score in critically ill patients. Gen Physiol Biophys. 2009;28:271-6.

Meregalli A, Oliveira RP, Friedman G. Occult hypoperfusion is associated with increased mortality in hemodynamically stable, high-risk, surgical patients. Crit Care. 2004;8:R60-5.

Liborio AB, Noritomi DT, Leite TT. Increased serum bicarbonate in critically ill patients: a retrospective analysis. Intensive Care Med. 2015;41:479-86.

Paz Y, Zegerman A, Sorkine P. Severe acidosis does not predict fatal outcomes in intensive care unit patients: a retrospective analysis. J Crit Care. 2014;29:210-3.

Wolters U, Wolf T, Stutzer H. ASA classification and perioperative variables as predictors of postoperative outcome. Br J Anaesth. 1996;77:217-22.

Naughton C, Feneck RO. The impact of age on 6-month survival in patients with cardiovascular risk factors undergoing elective non-cardiac surgery. Int J Clin Pract. 2007;61:768-76.

Moonesinghe SR, Mythen MG, Das P. Risk stratification tools for predicting morbidity and mortality in adult patients undergoing major surgery: qualitative systematic review. Anesthesiology. 2013;119:959-81.

Basques BA, Fu MC, Buerba RA. Using the ACS-NSQIP to identify factors affecting hospital length of stay after elective posterior lumbar fusion. Spine. 2014;39:497-502.

5dcc361a0e88255a17bf58f2 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections