Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1016/j.bjane.2017.07.002
Brazilian Journal of Anesthesiology
Special Article

Occupational hazards, DNA damage, and oxidative stress on exposure to waste anesthetic gases

Riscos ocupacionais, danos no material genético e estresse oxidativo frente à exposição aos resíduos de gases anestésicos

Lorena M.C. Lucio; Mariana G. Braz; Paulo do Nascimento Junior; José Reinaldo C. Braz; Leandro G. Braz

Downloads: 1
Views: 730

Abstract

Abstract Background and objectives The waste anesthetic gases (WAGs) present in the ambient air of operating rooms (OR), are associated with various occupational hazards. This paper intends to discuss occupational exposure to WAGs and its impact on exposed professionals, with emphasis on genetic damage and oxidative stress. Content Despite the emergence of safer inhaled anesthetics, occupational exposure to WAGs remains a current concern. Factors related to anesthetic techniques and anesthesia workstations, in addition to the absence of a scavenging system in the OR, contribute to anesthetic pollution. In order to minimize the health risks of exposed professionals, several countries have recommended legislation with maximum exposure limits. However, developing countries still require measurement of WAGs and regulation for occupational exposure to WAGs. WAGs are capable of inducing damage to the genetic material, such as DNA damage assessed using the comet assay and increased frequency of micronucleus in professionals with long-term exposure. Oxidative stress is also associated with WAGs exposure, as it induces lipid peroxidation, oxidative damage in DNA, and impairment of the antioxidant defense system in exposed professionals. Conclusions The occupational hazards related to WAGs including genotoxicity, mutagenicity and oxidative stress, stand as a public health issue and must be acknowledged by exposed personnel and responsible authorities, especially in developing countries. Thus, it is urgent to stablish maximum safe limits of concentration of WAGs in ORs and educational practices and protocols for exposed professionals.

Keywords

Inhaled anesthetics, Occupational exposure, Environment pollution, Genotoxicity testing, Genomic instability, Oxidative stress

Resumo

Resumo Justificativa e objetivos Os Resíduos de Gases Anestésicos (RGA) presentes no ar ambiente das Salas de Operação (SO) são associados a riscos ocupacionais diversos. O presente artigo propõe-se a discorrer sobre exposição ocupacional aos RGA e seu impacto em profissionais expostos, com ênfase em danos genéticos e estresse oxidativo. Conteúdo Apesar do surgimento de anestésicos inalatórios mais seguros, a exposição ocupacional aos RGA ainda é preocupação atual. Fatores relacionados às técnicas anestésicas e estação de anestesia, além da ausência de sistema de exaustão de gases em SO, contribuem para poluição anestésica. Para minimizar os riscos à saúde em profissionais expostos, recomendam-se limites máximos de exposição. Entretanto, em países em desenvolvimento, ainda carece a mensuração de RGA e de regulamentação frente à exposição ocupacional aos RGA. Os RGA são capazes de induzir danos no material genético, como danos no DNA avaliados pelo teste do cometa e aumento na frequência de micronúcleos em profissionais com exposição prolongada. O estresse oxidativo também é associado à exposição aos RGA por induzir lipoperoxidação, danos oxidativos no DNA e comprometimento do sistema antioxidante em profissionais expostos. Conclusões Por tratar-se de questão de saúde pública, é imprescindível reconhecer os riscos ocupacionais relacionados aos RGA, inclusive genotoxicidade, mutagenicidade e estresse oxidativo. Urge a necessidade de mensuração dos RGA para conhecimento desses valores nas SO, especialmente em países em desenvolvimento, de normatização das concentrações máximas seguras de RGA nas SO, além de se adotarem práticas de educação com conscientização dos profissionais expostos.

Palavras-chave

Anestésicos inalatórios, Exposição ocupacional, Poluição ambiental, Testes de genotoxicidade, Instabilidade genômica, Estresse oxidativo

References

Waste anesthetic gases: occupational hazards in hospitals. 2007.

Anesthetic gases: guidelines for workplace exposures. 2000.

Mcgregor DG. Occupational exposure to trace concentrations of waste anesthetic gases. Mayo Clin Proc. 2000;75:273-7.

Whalen FX, Bacon DR, Smith HM. Inhaled anesthetics: an historical overview. Best Pract Res Clin Anaesthesiol. 2005;19:323-30.

Campagna JA, Miller KW, Forman SA. Mechanisms of actions of inhaled anesthetics. N Engl J Med. 2003;348:2110-24.

Moppett I. Inhalational anaesthetics. Anaesth Intensive Care Med. 2012;13:348-53.

Torri G. Inhalation anesthetics: a review. Minerva Anestesiol. 2010;76:215-28.

Urban BW, Bleckwenn M. Concepts and correlations relevant to general anaesthesia. Br J Anaesth. 2002;89:3-16.

Yasny JS, White J. Environmental implications of anesthetic gases. Anesth Prog. 2012;59:154-8.

Baker AB. Low flow and closed circuits. Anaesth Intensive Care. 1994;22:341-2.

Oliveira CRD. Occupational exposure to anesthetic gases residue. Rev Bras Anestesiol. 2009;59:110-24.

Briggs G, Maycock J. The anaesthetic machine. Anaesth Intensive Care Med. 2013;14:94-8.

Ishizawa Y. Special article: general anesthetic gases and the global environment. Anesth Analg. 2011;112:213-7.

Tankó B, Molnár L, Fülesdi B. Occupational hazards of halogenated volatile anesthetics and their prevention: review of the literature. J Anesth Clin Res. 2014;5:426.

Vaĭsman AI. Working conditions in the operating room and their effect on the health of anesthetists. Eksp Khir Anesteziol. 1967;12:44-9.

Cohen EN, Brown BW, Bruce DL. Occupational disease among operating room personnel a national study - report of an ad hoc committee on the effect of trace anesthetics on the health of operating room personnel. American Society of Anesthesiologists. Anesthesiology. 1974;41:321-40.

Criteria for a recommended standard: occupational exposure to anesthetic gases and vapors. 1977.

Occupational exposure limits. 1996.

Vane LA, Almeida Neto JTP, Curi PR. O efeito do sistema Venturini na prevenção de poluição de sala cirúrgica. Rev Bras Anestesiol. 1990;40:159-65.

Souza KM, Braz LG, Nogueira FR. Occupational exposure to anesthetics leads to genomic instability, cytotoxicity and proliferative changes. Mutat Res. 2016:791-2.

Guidelines for construction and equipment of hospitals and medical facilities. 1993.

Turpin BJ, Huntzicker JJ. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmos Environ. 1995;29:3527-44.

Chinelato AR, Froes NDTC. Genotoxic effects on professionals exposed to inhalational anesthetics. Rev Bras Anestesiol. 2002;52:79-85.

Araujo TK, da Silva-Grecco RL, Bisinotto FMB. Genotoxic effects of anesthetics in operating room personnel evaluated by micronucleus test. J Anesthesiol Clin Sci. 2013;2:26.

Costa Paes ER, Braz MG, Lima JT. DNA damage and antioxidant status in medical residents occupationally exposed to waste anesthetic gases. Acta Cir Bras. 2014;29:280-6.

Chaoul MM, Braz JR, Lucio LM. Does occupational exposure to anesthetic gases lead to increase of pro-inflammatory cytokines?. Inflamm Res. 2015;64:939-42.

Mastrangelo G, Comiati V, dell'Aquila M. Exposure to anesthetic gases and parkinson disease. BMC Neurol. 2013;13:194.

Casale T, Caciari T, Rosati MV. Anesthetic gases and occupationally exposed workers. Environ Toxicol Pharmacol. 2014;37:267-74.

Rocha TL, Dias-Junior CA, Possomato-Vieira JS. Sevoflurane induces DNA damage whereas isoflurane leads to higher antioxidative status in anesthetized rats. Biomed Res Int. 2015;2015:264971.

Braz MG, Karahalil B. Genotoxicity of anesthetics evaluated in vivo (animals). Biomed Res Int. 2015;2015:280802.

Braz MG, Braz LG, Barbosa BS. DNA damage in patients who underwent minimally invasive surgery under inhalation or intravenous anesthesia. Mutat Res. 2011;726:251-4.

Orosz JE, Braz LG, Ferreira AL. Balanced anesthesia with sevoflurane does not alter redox status in patients undergoing surgical procedures. Mutat Res Genet Toxicol Environ Mutagen. 2014;773:29-33.

Nogueira FR, Braz LG, Andrade LR. Evaluation of genotoxicity of general anesthesia maintained with desflurane in patients under minor surgery. Environ Mol Mutagen. 2016;57:312-6.

Chandrasekhar M, Rekhadevi PV, Sailaja N. Evaluation of genetic damage in operating room personnel exposed to anaesthetic gases. Mutagenesis. 2006;21:249-54.

Szyfter K, Stachecki I, Kostrzewska-Poczekaj M. Exposure to volatile anaesthetics is not followed by a massive induction of single-strand DNA breaks in operation theatre personnel. J Appl Genet. 2016;57:343-8.

Norppa H. Cytogenetic biomarkers and genetic polymorphisms. Toxicol Lett. 2004;149:309-34.

Tice RR, Agurell E, Anderson D. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen. 2000;35:206-21.

Sanders RD, Weimann J, Maze M. Biologic effects of nitrous oxide: a mechanistic and toxicologic review. Anesthesiology. 2008;109:707-22.

Sardaş S, Aygün N, Gamli M. Use of alkaline Comet assay (single cell gel electrophoresis technique) to detect DNA damages in lymphocytes of operating room personnel occupationally exposed to anaesthetic gases. Mutat Res. 1998;418:93-100.

Eroglu A, Celep F, Erciyes N. A comparison of sister chromatid exchanges in lymphocytes of anesthesiologists to nonanesthesiologists in the same hospital. Anesth Analg. 2006;102:1573-7.

Wrońska-Nofer T, Nofer JR, Jajte J. Oxidative DNA damage and oxidative stress in subjects occupationally exposed to nitrous oxide (N2O). Mutat Res. 2012;731:58-63.

Thomas P, Holland N, Bolognesi C. Buccal micronucleus cytome assay. Nat Protoc. 2009;4:825-37.

Bonassi S, Znaor A, Ceppi M. An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis. 2007;28:625-31.

Wiesner G, Hoerauf K, Schroegendorfer K. High-level, but not low-level, occupational exposure to inhaled anesthetics is associated with genotoxicity in the micronucleus assay. Anesth Analg. 2001;92:118-22.

Bilban M, Jakopin CB, Ogrinc D. Cytogenetic tests performed on operating room personnel (the use of anaesthetic gases). Int Arch Occup Environ Health. 2005;78:60-4.

Bonassi S, Coskun E, Ceppi M. The HUman MicroNucleus project on eXfoLiated buccal cells (HUMN(XL)): the role of life-style, host factors, occupational exposures, health status, and assay protocol. Mutat Res. 2011;728:88-97.

Bolognesi C, Bonassi S, Knasmueller S. Clinical application of micronucleus test in exfoliated buccal cells: a systematic review and metanalysis. Mutat Res Rev Mutat Res. 2015;766:20-31.

Ceppi M, Biasotti B, Fenech M. Human population studies with the exfoliated buccal micronucleus assay: statistical and epidemiological issues. Mutat Res. 2010;705:11-9.

Betteridge DJ. What is oxidative stress?. Metabolism. 2000;49:3-8.

Gasparovic AC, Jaganjac M, Mihaljevic B. Assays for the measurement of lipid peroxidation. Methods Mol Biol. 2013;965:283-96.

Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence?. Lancet. 1994;344:721-4.

Lee YM, Song BC, Yeum KJ. Impact of volatile anesthetics on oxidative stress and inflammation. Biomed Res Int. 2015;2015:242709.

Malekirad AA, Ranjbar A, Rahzani K. Oxidative stress in operating room personnel: occupational exposure to anesthetic gases. Hum Exp Toxicol. 2005;24:597-601.

Izdes S, Sardas S, Kadioglu E. DNA damage, glutathione, and total antioxidant capacity in anesthesia nurses. Arch Environ Occup Health. 2010;65:211-7.

Türkan H, Aydin A, Sayal A. Effect of volatile anesthetics on oxidative stress due to occupational exposure. World J Surg. 2005;29:540-2.

Baysal Z, Cengiz M, Ozgonul A. Oxidative status and DNA damage in operating room personnel. Clin Biochem. 2009;42:189-93.

5dcc5c760e8825501fbf58f3 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections