Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1016/j.bjane.2015.08.012
Brazilian Journal of Anesthesiology
Special Article

Perineural dexmedetomidine effects on sciatic nerve in rat

Efeitos de dexmedetomidina perineural no nervo ciático em ratos

Abdulkadir Yektaş; ; Murat Çabalar; Mehmet Sar; Ayş; in Alagöl; Duygu Sultan Çelik; Vildan Yayla; Deniz Tolga

Downloads: 0
Views: 626

Abstract

Abstract The present study was designed to test the hypothesis that high dose dexmedetomidine would increase the duration of antinociception to a thermal stimulus in a rat model of sciatic nerve blockade without causing nerve damage. The rats were anesthetized with isoflurane. After electromyography (EMG) recordings, right sciatic nerves were explored and perineural injections were delivered: Group D (n = 7), 40 µg µg kg-1 dexmedetomidine administration, Group II (n = 6), (0.2 mL) saline administration, Group III (n = 2), only surgically exploration of the right sciatic nevre. Time to paw withdrawal latency (PAW) to a thermal stimulus for both paws and an assessment of motor function were measured every 30 min after the nerve block until a return to baseline. The compound muscle action potential (CMAP) of right and left sciatic nerves were recorded 10 times per each nerve once more after perineural injections at 14 day. After EMG recordings, right and the part of left sciatic nerve were excised at a length of at minimum 15 mm for histopathological examination. Comparison of right/left CMAP amplitude ratios before and 14 days after the procedure showed a statistically significant difference (p = 0.000). There were no differences in perineural inflammation between the Group D, Group S, and Group E at 14 days.

Keywords

Paw withdrawal latency testing, Analgesia meter, Sciatic nerve, Electromyography, Dexmedetomidine

Resumo

Resumo O presente estudo foi desenvolvido para testar a hipótese de que dexmedetomidina em dose alta aumentaria a duração da antinocicepção a um estímulo térmico em modelo de rato de bloqueio do nervo ciático sem causar danos ao nervo. Os ratos foram anestesiados com isoflurano. Após os registros da eletromiografia (EMG), os nervos ciáticos direitos foram explorados e injeções perineurais foram administradas: Grupo D (n = 7) recebeu 40 µg/kg-1 de dexmedetomidina, Grupo II (n = 6) recebeu 0,2 mL de solução salina, Grupo III (n = 2) recebeu apenas exploração cirúrgica do nervo ciático direito. O tempo de latência de retirada da pata (LRP) a um estímulo térmico para ambas as patas e uma avaliação da função motora foram avaliados a cada 30 minutos após o bloqueio do nervo até o retorno à fase basal. O potencial de ação muscular composto (PAMC) dos nervos ciático direito e esquerdo foi registrado 10 vezes para cada nervo, mais uma vez, após as injeções perineurais no 14º dia. Após os registros da EMG, o nervo ciático direito e parte do esquerdo foram excisados com um comprimento de no mínimo 15 mm para exame histopatológico. A comparação das proporções da amplitude do PAMC direito/esquerdo antes e 14 dias após o procedimento mostrou uma diferença estatisticamente significativa (p = 0,000). Não houve diferenças em inflamação perineural entre os grupos D, S e E aos 14 dias.

Palavras-chave

Testes de latência de retirada da pata, Medidor de analgesia, Nervo ciático, Eletromiografia, Dexmedetomidina

References

Casati A, Fanelli G, Albertin A. Interscalene brachial plexus anesthesia with either 0.5% ropivacaine or 0.5% bupivacaine. Minerva Anestesiol. 2000;66:39-44.

Hickey R, Hoffman J, Ramamurthy S. A comparison of ropivacaine 0.5% and bupivacaine 0.5% for brachial plexus block. Anesthesiology. 1991;74:639-42.

Hickey R, Rowley CL, Candido KD. A comparative study of 0.25% ropivacaine and 0.25% bupivacaine for brachial plexus block. Anesth Analg. 1992;75:602-6.

Vaghadia H, Chan V, Ganapathy S. A multicentre trial of ropivacaine 7.5 mg × ml-1 vs bupivacaine 5 mg × ml-1 for supra clavicular brachial plexus anesthesia. Can J Anaesth. 1999;46:946-51.

Lydic R, Baghdoyan HA. Neurochemical mechanisms mediating opioid-induced REM sleep disruption. Sleep and pain. 2007:99-122.

Bonafide CP, Aucutt-Walter N, Divittore N. Remifentanil inhibits rapid eye movement sleep but not the nocturnal melatonin surge in humans. Anesthesiology. 2008;108:627-33.

Bowdle TA. Nocturnal arterial oxygen desaturation and episodic airway obstruction after ambulatory surgery. Anesth Analg. 2004;99:70-6.

Rosenberg J, Rosenberg-Adamsen S, Kehlet H. Post-operative sleep disturbance: causes, factors and effects on outcome. Eur J Anaesthesiol. 1995;10:28-30.

Eisenach JC, De Kock M, Klimscha W. Alpha(2)-adrenergic agonists for regional anesthesia. A clinical review of clonidine (1984-1995). Anesthesiology. 1996;85:655-74.

Murphy DB, McCartney CJ, Chan VW. Novel analgesic adjuncts for brachial plexus block: a systematic review. Anesth Analg. 2000;90:1122-8.

McCartney CJ, Duggan E, Apatu E. Should we add clonidine to local anesthetic for peripheral nevre blockade? A qualitative systematic review of the literature. Reg Anesth Pain Med. 2007;32:330-8.

Brummett CM, Norat MA, Palmisano JM. Perineural administration of dexmedetomidine in combination with bupivacaine enhances sensory and motor blockade in sciatic nerve block without inducing neurotoxicity in rat. Anesthesiology. 2008;109:502-11.

Benoit PW, Belt WD. Destruction and regeneration of skeletal muscle after treatment with a local anaesthetic, bupivacaine (Marcaine). J Anat. 1970;107:547-56.

Yagiela JA, Benoit PW, Buoncristiani RD. Comparison of myotoxic effects of lidocaine with epinephrine in rats and humans. Anesth Analg. 1981;60:471-80.

Zink W, Graf BM. Local anesthetic myotoxicity. Reg Anesth Pain Med. 2004;29:333-40.

Zink W, Seif C, Bohl JR. The acute myotoxic effects of bupivacaine and ropivacaine after continuous peripheral nerve blockades. Anesth Analg. 2003;97:1173-9.

Hebl JR. Ultrasound-guided regional anesthesia and the prevention of neurologic injury: fact or fiction?. Anesthesiology. 2008;108:186-8.

Koff MD, Cohen JA, McIntyre JJ. Severe brachial plexopathy after an ultrasoundguided single-injection nerve block for total shoulder arthroplasty in a patient with multiple sclerosis. Anesthesiology. 2008;108:325-8.

Horlocker TT, O'Driscoll SW, Dinapoli RP. Recurring brachial plexus neuropathy in a diabetic patient after shoulder surgery and continuous interscalene block. Anesth Analg. 2000;91:688-90.

Lavand'homme PM, Eisenach JC. Perioperative administration of the alpha2-adrenoceptor agonist clonidine at the site of nerve injury reduces the development of mechanical hypersensitivity and modulates local cytokine expression. Pain. 2003;105:247-54.

Lavand'homme PM, Ma W, De Kock M. Perineural alpha(2A)-adrenoceptor activation inhibits spinal cord neuroplasticity and tactile allodynia after nerve injury. Anesthesiology. 2002;97:972-80.

Liu B, Eisenach JC. Perineural clonidine reduces p38 mitogen-activated protein kinase activation in sensory neurons. Neuroreport. 2006;17:1313-7.

Romero-Sandoval A, Eisenach JC. Perineural clonidine reduces mechanical hypersensitivity and cytokine production in established nerve injury. Anesthesiology. 2006;104:351-5.

Romero-Sandoval A, Eisenach JC. Clonidine reduces hypersensitivity and alters the balance of pro and anti-inflammatory leukocytes after local injection at the site of inflammatory neuritis. Brain Behav Immun. 2007;21:569-80.

Romero-Sandoval EA, McCall C, Eisenach JC. Alpha2-adrenoceptor stimulation transforms immune responses in neuritis and blocks neuritis-induced pain. J Neurosci. 2005;25:8988-94.

Brummett CM, Norat MA, Palmisano JM. Perineural administration of dexmedetomidine in combination with bupivacaine enhances sensory and motor blockade in sciatic nerve block without inducing neurotoxicity in the rat. Anesthesiology. 2008;109:502-11.

Huseyınoğlu N, Ozaydın I, Yayla S. Electrophysiological assessment of the effects of silicone tubes and hyaluronic acid on nerve regeneration in rats with sciatic neurorrhaphy. Kafkas Univ Vet Fak Derg. 2012;18:917-22.

Wang H, Sorenson EJ, Spinner RJ. Electrophysiologic findings and grip strength after nerve injuries in the rat forelimb. Muscle Nerve. 2008;38:1254-65.

Dongren Y, Tao L, Fengsheng H. Electroneurophysiological studies in rats of acute dimethoate poisoning. Toxicol Lett. 1999;30:249-54.

Shirasaka T, Kannan H, Takasaki M. Activation of a G protein-coupled inwardly rectifying K+ current and suppression of Ih contribute to dexmedetomidine-induced inhibition of rat hypothalamic paraventricular nucleus neurons. Anesthesiology. 2007;107:605-15.

Oda A, Iida H, Tanahashi S. Effects of alpha2-adrenoceptor agonists on tetrodotoxin-resistant Na+ channels in rat dorsal root ganglion neurons. Eur J Anaesthesiol. 2007;24:934-41.

Brummett CM, Padda AK, Amodeo FS. Perineural dexmedetomidine added to ropivacaine causes a dose-dependent increase in the duration of thermal antinociception in sciatic nerve block in rat. Anesthesiology. 2009;111:1111-9.

Sia S, Lepri A. Clonidine administered as an axillary block does not affect postoperative pain when given as the sole analgesic. Anesth Analg. 1999;88:1109-12.

Swami SS, Keniya VM, Ladi SD. Comparison of dexmedetomidine and clonidine (α2 agonist drugs) as an adjuvant to local anaesthesia in supraclavicular brachial plexus block: a randomised double-blind prospective study. Indian J Anaesth. 2012;56:243-9.

Brummett CM, Amodeo FS, Janda AM. Perineural dexmedetomidine provides an increased duration of analgesia to a thermal stimulus when compared with a systemic control in a rat sciatic nerve block. Reg Anesth Pain Med. 2010;35:427-31.

Iskandar H, Guillaume E, Dixmerias F. The enhancement of sensory blockade by clonidine selectively added to mepivacaine after midhumeral block. Anesth Analg. 2001;93:771-5.

Hung YC, Kau YC, Zizza AM. Ephedrine blocks rat sciatic nerve in vivo and sodium channels in vitro. Anesthesiology. 2005;103:1246-52.

Kau YC, Hung YC, Zizza AM. Efficacy of lidocaine or bupivacaine combined with ephedrine in rat sciatic nerve block. Reg Anesth Pain Med. 2006;31:14-8.

Dyhre H, Soderberg L, Bjorkman S. Local anesthetics in lipid-depot formulations - neurotoxicity in relation to duration of effect in a rat model. Reg Anesth Pain Med. 2006;31:401-8.

Soderberg L, Dyhre H, Roth B. Ultralong peripheral nerve block by lidocaine:prilocaine 1:1 mixture in a lipid depot formulation: comparison of in vitro, in vivo, and effect kinetics. Anesthesiology. 2006;104:110-21.

Schoeler M, Loetscher PD, Rossaint R. Dexmedetomidine is neuroprotective in an in vitro model for traumatic brain injury. BMC Neurol. 2012;11:12-20.

Sanders RD, Sun P, Patel S. Dexmedetomidine provides cortical neuroprotection: impact on anaesthetic-induced neuroapoptosis in the rat developing brain. Acta Anaesthesiol Scand. 2010;54:710-6.

Konakci S, Adanir T, Yilmaz G. The efficacy and neurotoxicity of dexmedetomidine administered via the epidural route. Eur J Anaesthesiol. 2008;25:403-9.

Romero-Sandoval A, Eisenach JC. Clonidine reduces hypersensitivity and alters the balance of proand anti-inflammatory leukocytes after local injection at the site of inflammatory neuritis. Brain Behav Immun. 2007;21:569-80.

Ilfeld BM, Enneking FK. Continuous peripheral nerve blocks at home: a review. Anesth Analg. 2005;100:1822-33.

Korte N, Schenk HC, Grothe C. Evaluation of periodic electrodiagnostic measurements to monitor motor recovery after different peripheral nerve lesions in the rat. Muscle Nerve. 2011;44:63-73.

Wolthers M, Moldovan M, Binderup T. Comparative electrophysiological, functional, and histological studies of nerve lesions in rats. Microsurgery. 2005;25:508-19.

5dcd9f650e8825dd70bf58f1 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections