Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1016/j.bjane.2015.04.008
Brazilian Journal of Anesthesiology
Scientific Article

Isoflurane provides neuroprotection in neonatal hypoxic ischemic brain injury by suppressing apoptosis

Isoflurano fornece neuroproteção em lesão cerebral hipóxico-isquêmica neonatal por inibição da apoptose

De-An Zhao; Ling-Yun Bi; Qian Huang; Fang-Min Zhang; Zi-Ming Han

Downloads: 0
Views: 716

Abstract

Abstract Background and objectives: Isoflurane is halogenated volatile ether used for inhalational anesthesia. It is widely used in clinics as an inhalational anesthetic. Neonatal hypoxic ischemia injury ensues in the immature brain that results in delayed cell death via excitotoxicity and oxidative stress. Isoflurane has shown neuroprotective properties that make a beneficial basis of using isoflurane in both cell culture and animal models, including various models of brain injury. We aimed to determine the neuroprotective effect of isoflurane on hypoxic brain injury and elucidated the underlying mechanism. Methods: A hippocampal slice, in artificial cerebrospinal fluid with glucose and oxygen deprivation, was used as an in vitro model for brain hypoxia. The orthodromic population spike and hypoxic injury potential were recorded in the CA1 and CA3 regions. Amino acid neurotransmitters concentration in perfusion solution of hippocampal slices was measured. Results: Isoflurane treatment caused delayed elimination of population spike and improved the recovery of population spike; decreased frequency of hypoxic injury potential, postponed the onset of hypoxic injury potential and increased the duration of hypoxic injury potential. Isoflurane treatment also decreased the hypoxia-induced release of amino acid neurotransmitters such as aspartate, glutamate and glycine induced by hypoxia, but the levels of γ-aminobutyric acid were elevated. Morphological studies showed that isoflurane treatment attenuated edema of pyramid neurons in the CA1 region. It also reduced apoptosis as evident by lowered expression of caspase-3 and PARP genes. Conclusions: Isoflurane showed a neuro-protective effect on hippocampal neuron injury induced by hypoxia through suppression of apoptosis.

Keywords

Isoflurane, Hippocampus, Brain injury, Neuroprotection, Apoptosis

Resumo

Resumo Justificativa e objetivos: Isoflurano é um éter volátil halogenado usado para anestesia por via inalatória. É amplamente usado na clínica como um anestésico para inalação. A lesão hipóxico-isquêmica neonatal ocorre no cérebro imaturo e resulta em morte celular tardia via excitotoxicidade e estresse oxidativo. Isoflurano mostrou ter propriedades neuroprotetoras que formam uma base benéfica para o seu uso tanto em cultura de células quanto em modelos animais, incluindo vários modelos de lesão cerebral. Nosso objetivo foi determinar o efeito neuroprotetor de isoflurano em hipóxia cerebral e elucidar o mecanismo subjacente. Métodos: Fatias de hipocampo, em fluido cerebrospinal artificial (CSFA) com glicose e privação de oxigênio, foram usadas como um modelo in vitro de hipóxia cerebral. O pico de população ortodrômica (PPO) e o potencial de lesão hipóxica (PLH) foram registrados nas regiões CA1 e CA3. A concentração de neurotransmissores de aminoácidos na solução de perfusão das fatias de hipocampo foi medida. Resultados: O tratamento com isoflurano retardou a eliminação do PPO e melhorou a recuperação do PPO; diminuiu a frequência do PLH, retardou o início do PLH e aumentou a duração do PLH. O tratamento com isoflurano também diminuiu a liberação de neurotransmissores de aminoácidos induzida pela hipóxia, como aspartato, glutamato e glicina, mas os níveis de ácido γ-aminobutírico (GABA) estavam elevados. Estudos morfológicos mostram que o tratamento de edema com isoflurano atenuou o edema de neurônios piramidais na região CA1. Também reduziu a apoptose, como mostrado pela expressão reduzida da caspase-3 e genes PARP. Conclusões: Isoflurano mostrou um efeito neuroprotetor na lesão neuronal no hipocampo induzida por hipóxia através da supressão de apoptose.

Palavras-chave

Isoflurano, Hipocampo, Lesão cerebral, Neuroproteção, Apoptose

References

Feiner JR, Bickler PE, Estrada S. Mild hypothermia, but not propofol, is neuroprotective in organotypic hippocampal cultures. Anesth Analg. 2005;100:215-25.

Kataoka K, Yanase H. Mild hypothermia - a revived countermeasure against ischemic neuronal damages. Neurosci Res. 1998;32:103-17.

Hara M, Kai Y, Ikemoto Y. Propofol activates GABAA receptor-chloride ionophore complex in dissociated hippocampal pyramidal neurons of the rat. Anesthesiology. 1993;79:781-8.

Kochs E, Hoffman WE, Werner C. The effects of propofol on brain electrical activity, neurologic outcome, and neuronal damage following incomplete ischemia in rats. Anesthesiology. 1992;76:245-52.

Hans P, Bonhomme V, Collette J. Propofol protects cultured rat hippocampal neurons against N-methyl-d-aspartate receptor-mediated glutamate toxicity. J Neurosurg Anesthesiol. 1994;6:249-53.

Daskalopoulos R, Korcok J, Farhangkhgoee P. Propofol protection of sodium-hydrogen exchange activity sustains glutamate uptake during oxidative stress. Anesth Analg. 2001;93:1199-204.

Grasshoff C, Gillessen T. The effect of propofol on increased superoxide concentration in cultured rat cerebrocortical neurons after stimulation of N-methyl-d-aspartate receptors. Anesth Analg. 2002;95:920-2.

O'Shea SM, Wong LC, Harrison NL. Propofol increases agonist efficacy at the GABA(A) receptor. Brain Res. 2000;852:344-8.

Yano T, Nakayama R, Ushijima K. Intracerebroventricular propofol is neuroprotective against transient global ischemia in rats: extracellular glutamate level is not a major determinant. Brain Res. 2000;883:69-76.

Tsai YC, Huang SJ, Lai YY. Propofol does not reduce infarct volume in rats undergoing permanent middle cerebral artery occlusion. Acta Anaesthesiol Sin. 1994;32:99-104.

Burchell SR, Dixon BJ, Tang J. Isoflurane provides neuroprotection in neonatal hypoxic ischemic brain injury. J Investig Med. 2013;61:1078-83.

Chung IS, Kim JA, Choi HS. Reactive oxygen species by isoflurane mediates inhibition of nuclear factor kappaB activation in lipopolysaccharide-induced acute inflammation of the lung. Anesth Analg. 2013;116:327-35.

Harr JN, Moore EE, Stringham J. Isoflurane prevents acute lung injury through ADP-mediated platelet inhibition. Surgery. 2012;152:270-6.

Kinoshita H, Matsuda N, Iranami H. Isoflurane pretreatment preserves adenosine triphosphate-sensitive K(+) channel function in the human artery exposed to oxidative stress caused by high glucose levels. Anesth Analg. 2012;115:54-61.

Kim M, Kim N, D’Agati VD. Isoflurane mediates protection from renal ischemia-reperfusion injury via sphingosine kinase and sphingosine-1-phosphate-dependent pathways. Am J Physiol Renal Physiol. 2007;293:F1827-35.

Lang XE, Wang X, Zhang KR. Isoflurane preconditioning confers cardioprotection by activation of ALDH2. PLoS ONE. 2013;8:e52469.

Sasaoka N, Kawaguchi M, Kawaraguchi Y. Isoflurane exerts a short-term but not a long-term preconditioning effect in neonatal rats exposed to a hypoxic-ischaemic neuronal injury. Acta Anaesthesiol Scand. 2009;53:46-54.

Ferriero DM, Bonifacio SL. The search continues for the elusive biomarkers of neonatal brain injury. J Pediatr. 2014;164:438-40.

Altay O, Suzuki H, Hasegawa Y. Isoflurane attenuates blood-brain barrier disruption in ipsilateral hemisphere after subarachnoid hemorrhage in mice. Stroke. 2012;43:2513-6.

Li H, Yin J, Li L. Isoflurane postconditioning reduces ischemia-induced nuclear factor-kappaB activation and interleukin 1beta production to provide neuroprotection in rats and mice. Neurobiol Dis. 2013;54:216-24.

Li L, Zuo Z. Isoflurane postconditioning induces neuroprotection via Akt activation and attenuation of increased mitochondrial membrane permeability. Neuroscience. 2011;199:44-50.

Khatibi NH, Ma Q, Rolland W. Isoflurane posttreatment reduces brain injury after an intracerebral hemorrhagic stroke in mice. Anesth Analg. 2011;113:343-8.

Statler KD, Alexander H, Vagni V. Isoflurane exerts neuroprotective actions at or near the time of severe traumatic brain injury. Brain Res. 2006;1076:216-24.

Zhou Y, Lekic T, Fathali N. Isoflurane posttreatment reduces neonatal hypoxic-ischemic brain injury in rats by the sphingosine-1-phosphate/phosphatidylinositol-3-kinase/Akt pathway. Stroke. 2010;41:1521-7.

Dallasen RM, Bowman JD, Xu Y. Isoflurane does not cause neuroapoptosis but reduces astroglial processes in young adult mice. Med Gas Res. 2011;1:27.

Tokunaga H, Hiramatsu K, Sakaki T. Effect of preceding in vivo sublethal ischemia on the evoked potentials during secondary in vitro hypoxia evaluated with gerbil hippocampal slices. Brain Res. 1998;784:316-20.

Fairchild MD, Parsons JE, Wasterlain CG. A hypoxic injury potential in the hippocampal slice. Brain Res. 1988;453:357-61.

Sick TJ, Solow EL, Roberts Jr. EL. Extracellular potassium ion activity and electrophysiology in the hippocampal slice: paradoxical recovery of synaptic transmission during anoxia. Brain Res. 1987;418:227-34.

Pellegrini-Giampietro DE, Gorter JA, Bennett MV. The GluR2 (GluR-B) hypothesis: Ca(2+)-permeable AMPA receptors in neurological disorders. Trends Neurosci. 1997;20:464-70.

Hirose K, Chan PH. Blockade of glutamate excitotoxicity and its clinical applications. Neurochem Res. 1993;18:479-83.

Kollegger H, McBean GJ, Tipton KF. Reduction of striatal N-methyl-d-aspartate toxicity by inhibition of nitric oxide synthase. Biochem Pharmacol. 1993;45:260-4.

Salinska E, Pluta R, Puka M. Blockade of N-methyl-d-aspartate-sensitive excitatory amino acid receptors with 2-amino-5-phosphonovalerate reduces ischemia-evoked calcium redistribution in rabbit hippocampus. Exp Neurol. 1991;112:89-94.

Xie Y, Zacharias E, Hoff P. Ion channel involvement in anoxic depolarization induced by cardiac arrest in rat brain. J Cereb Blood Flow Metab. 1995;15:587-94.

Cobas A, Fairen A, Alvarez-Bolado G. Prenatal development of the intrinsic neurons of the rat neocortex: a comparative study of the distribution of GABA-immunoreactive cells and the GABAA receptor. Neuroscience. 1991;40:375-97.

Lauder JM, Han VK, Henderson P. Prenatal ontogeny of the GABAergic system in the rat brain: an immunocytochemical study. Neuroscience. 1986;19:465-93.

Globus MY, Busto R, Martinez E. Comparative effect of transient global ischemia on extracellular levels of glutamate, glycine, and gamma-aminobutyric acid in vulnerable and nonvulnerable brain regions in the rat. J Neurochem. 1991;57:470-8.

Kemp JA, Leeson PD. The glycine site of the NMDA receptor-five years on. Trends Pharmacol Sci. 1993;14:20-5.

Kleckner NW, Dingledine R. Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science. 1988;241:835-7.

5dcd590e0e88251010bf58f1 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections