Brazilian Journal of Anesthesiology
https://bjan-sba.org/article/doi/10.1016/j.bjan.2013.06.002
Brazilian Journal of Anesthesiology
Scientific Article

Avaliação in vitro das características antimicrobianas de sugamadex

In vitro evaluation of antimicrobial features of sugammadex

Volkan Hanci; Ahmet Vural; Sevgi Yilmaz Hanci; Hasan Ali Kiraz; Dilek Ömür; Ahmet Ünver

Downloads: 0
Views: 967

Resumo

Justificativa e objetivo: os medicamentos administrados por via intravenosa podem ser contaminados durante as várias fases de produção ou preparação. Sugamadex é uma gama-ciclodextrina modificada. Embora muitas pesquisas sobre os efeitos antibacterianos de uma variedade de ciclodextrinas estejam disponíveis, não há estudos dos efeitos antibacterianos de sugamadex. Este estudo investigou a atividade antimicrobiana in vitro de sugamadex. Materiais e métodos: a atividade antimicrobiana in vitro de sugamadex foi investigada pelo método de microdiluição em meio de cultura. O pH da solução de ensaio foi determinado com o uso de um medidor de pH. Os microrganismos-teste analisados incluíram Staphylococcus aureus ATCC 29213, Enterococcus fecalis ATCC 29212, Escherichia coli ATCC 25922 e Pseudomonas aeruginosa ATCC 27853. Na segunda fase do estudo, 100 mg/mL de sugamadex (50 μg) foram contaminados com microrganismos-teste (50 μg), incluindo S. aureus ATCC 29213, E. fecalis ATCC 29212, E. coli ATCC 25922 e P. aeruginosa ATCC 27853, incubados por 24 horas e, em seguida, a produção bacteriana foi avaliada. Resultados: o pH das soluções da análise variaram entre 7,25 e 6,97. Com o uso do método de microdiluição, sugamadex não apresentou efeito antibacteriano contra S. aureus, E. fecalis, E. coli e P. aeruginosa em qualquer concentração. Na segunda fase do estudo, a produção bacteriana foi observada após 24 horas em 100 mg/mL de sugamadex contaminados com os microrganismos-teste S. aureus, E. fecalis, E. coli e P. aeruginosa.

Palavras-chave

Sugamadex, Efeito antimicrobiano, S. aureus, E. fecalis, E. coli, P. aeruginosa

Abstract

Background: Drugs administered by intravenous routes may be contaminated during several stages of production or preparation. Sugammadex is a modified gamma cyclodextrin. While research into the antibacterial effects of varieties of cyclodextrin is available, there are no studies focusing on the antibacterial effects of sugammadex. This study investigates the in vitro antimicrobial activity of sugammadex. Materials and methods: The in vitro antimicrobial activity of sugammadex was investigated using the broth microdilution method. The pH of the test solution was determined using a pH meter. The test microorganisms included Staphylococcus aureus ATCC 29213, Enterococcus fecalis ATCC 29212, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. In the second phase of the study 100 mg/mL sugammadex (50 μg) was contaminated with test microorganisms (50 μg), including S. aureus ATCC 29213, E. fecalis ATCC 29212, E. coli ATCC 25922 and P. aeruginosa ATCC 27853, left to incubate for 24 h and then the bacterial production in sugammadex was evaluated. Results: The pH of the test solutions ranged between 7.25 and 6.97. Using the microdilution method, sugammadex had no antibacterial effect on S. aureus, E. fecalis, E. coli and P. aeruginosa at any concentration. In the second phase of the study bacterial production was observed after 24 h in 100 mg/mL sugammadex contaminated with the test microorganisms S. aureus, E. fecalis, E. coli and P. aeruginosa. Conclusions: Sugammadex had no antimicrobial effect on the test microorganisms, S. aureus, E. fecalis, E. coli and P. aeruginosa. Care should be taken that sterile conditions are maintained in the preparation of sugammadex; that the same sugammadex preparation not be used for more than one patient; and that storage conditions are adhered to after sugammadex is put into the injector.

Keywords

Sugammadex, Antimicrobial effect, S. aureus, E. fecalis, E. coli, P. aeruginosa

References

Heldmann E, Brown DC, Shofer F. The association of propofol usage with postoperative wound infection rate in clean wounds: a retrospective study. Vet Surg. ;28:259-256.

Henry B, Plante-Jenkins C, Ostrowska K. An outbreak of Serratia marcescens associated with the anesthetic agent propofol. Am J Infect Control. ;29:312-315.

Crowther J, Hrazdil J, Jolly DT, Galbraith JC, Greacen M, Grace M. Growth of microorganisms in propofol, thiopental, and a 1:1 mixture of propofol and thiopental. Anesth Analg. ;82:478-475.

Sosis MB, Braverman B, Villaflor E. Propofol, but not thiopental, supports the growth of andida albicans. Anesth Analg. ;81:132-134.

Keleş GT, Kurutepe S, Tok D, Gazi H, Dinç G. Comparison of antimicrobial effects of dexmedetomidine and etomidate-lipuro with those of propofol and midazolam. Eur J Anaesthesiol. ;23:1040-1037.

Ayoglu H, Kulah C, Turan I. Antimicrobial effects of two anaesthetic agents: dexmedetomidine and midazolam. Anaesth Intensive Care. ;36:684-681.

Graystone S, Wells MF, Farrell DJ. Do intensive care drug infusions support microbial growth?. Anaesth Intensive Care. ;25:640-642.

Hanci V, Cömert F, Ayoglu H, Kulah C, Yurtlu S, Turan IO. Evaluation of the antimicrobial effects of atracurium, rocuronium and mivacurium. Antimicrobial effects of muscle relaxants. Drugs Ther Stud. ;1:e2.

Naguib M. Sugammadex:. another milestone in clinical neuromuscular pharmacology. Anesth Analg. ;104:575-581.

Brull SJ, Naguib M. Selective reversal of muscle relaxation in general anesthesia: focus on sugammadex. Drug Des Dev Ther. ;3:129-119.

Rex C, Bergner UA, Pühringer FK. Sugammadex: a selective relaxant-binding agent providing rapid reversal. Curr Opin Anaesthesiol. ;23:465-461.

Joo JS, Park KC, Song JY. Thin-layer liquid culture technique for the growth of Helicobacter pylori. Helicobacter. ;15:302-295.

Jean-Baptiste E, Blanchemain N, Martel B, Neu C, Hildebrand HF, Haulon S. Safety, healing, and efficacy of vascular prostheses coated with hydroxypropyl-b-cyclodextrin polymer: experimental in vitro and animal studies. Eur J Vasc Endovasc Surg. ;43:188-197.

Performance standards for antimicrobial susceptibility testing. Document M100-S15.. .

Langevin PB, Gravenstein N, Doyle TJ. Growth of Staphylococcus aureus in Diprivan and Intralipid: implications on the pathogenesis of infections. Anesthesiology. ;91:1394-1400.

Durak P, Karabiber N, Ayoglu H, Yilmaz TH, Erdemli Ö. Investigation on antibacterial activities of atracurium, lidocaine, propofol, thiopentone, and midazolam. Acta Anaesth Ital. ;52:39-43.

Arduino MJ, Bland LA, McAllister SK. Microbial growth and endotoxin production in the intravenous anesthetic propofol. Infect Control Hosp Epidemiol. ;12:535-539.

Sosis MB, Braverman B. Growth of Staphyloccoccus aureus in four intravenous anaesthetics. Anesth Analg. ;77:766-778.

Bar R. A new cyclodextrin-agar medium for surface cultivation of microbes on lipophilic substrates. Appl Microbiol Biotechnol. ;32:472-470.

Douraghi M, Kashani SS, Zeraati H, Esmaili M, Oghalaie A, Mohammadi M. Comparative evaluation of three supplements for Helicobacter pylori growth in liquid culture. Curr Microbiol. ;60:262-254.

Marchini A, d'Apolito M, Massari P, Atzeni M, Copass M, Olivieri R. Cyclodextrins for growth of Helicobacter pylori and production of vacuolating cytotoxin. Arch Microbiol. ;164:293-290.

Olivieri R, Bugnoli M, Armellini D. Growth of Helicobacter pylori in media containing cyclodextrins. J Clin Microbiol. ;31:160-162.

Ohtsuka M, Kikuchi K, Shundo K. Improved selective isolation of Bordetella pertussis by use of modified cyclodextrin solid medium. J Clin Microbiol. ;47:4167-4164.

Letowska I, Chodorowska M, Kaczurba E, Kuklinska D, Tyski S. Bacterial growth and virulence factors production by different Bordetella pertussis strains. Acta Microbiol Pol. ;46:55-45.

Imaizumi A, Suzuki Y, Ono S, Sato H, Sato Y. Heptakis(2,6-O-dimethyl)beta-cyclodextrin: a novel growth stimulant for Bordetella pertussis phase I. J Clin Microbiol. ;17:786-781.

Suzuki Y, Imaizumi A, Ginnaga A, Sato H, Sato Y. Effect of heptakis (2,6-0-dimethyl)beta-cyclodextrin on cell growth and the production of pertussis toxin and filamentous hemagglutinin in Bordetella pertussis. Dev Biol Stand. ;61:92-89.

Zhang HM, Li Z, Uematsu K, Kobayashi T, Horikoshi K. Antibacterial activity of cyclodextrins against Bacillus strains. Arch Microbiol. ;190:605-609.

Yamamura H, Suzuki K, Uchibori K. Mimicking an antimicrobial peptide polymyxin B by use of cyclodextrin. Chem Commun (Camb). ;48:892-894.

Gudmundsson A, Erlendsdottir H, Gottfredsson M. Impact of pH and cationic supplementation on in vitro postantibiotic effect. Antimicrob Agent Chemother. ;35:2617-2624.

Clinton LW, warriner CB, McCormack JP, Alison MC. Reconstituted thiopentone retains its alkalinity without bacterial contamination for up to four weeks. Can J Anaesth. ;39:504-508.

Farrington M, McGinnes J, Matthews I, Park GR. Do infusions of midazolam and propofol pose an infection risk to critically ill patients?. Br J Anaesth. ;72:415-417.

5dcdb4080e88253d5fbf58f1 rba Articles
Links & Downloads

Braz J Anesthesiol

Share this page
Page Sections