9P2111

EFEITOS DA VENTILAÇÃO CONTROLADA MECÂNICA SOBRE O PH E OS GASES DO SANGUE

Estudo Comparativo de 2 Ventiladores (*)

DRA. ESMERALDA L. MARIANI (**)

A comparação dos valores do pH e dos gases sangüíneos de 30 doentes anestesiados com halotano ventilados com o Respirador de Takaoka, modelo 600 e Ventilador de Takaoka modelo 850 com oxigênio puro e mistura oxigênio-ar mostrou que:

- Os dois ventiladores automáticos comparados são iguais na ventilação que produzem, quando se observam os seus efeitos sobre o pH e os gases do sangue, desde que sejam usados com oxigênio 100%.
- 2. A ventilação automática, nos grupos A e B, induziu alcalose respiratória em todos os doentes, se compararmos os valores obtidos durante a anestesia com os valores iniciais. Os valores obtidos nos doentes do grupo C não mostraram diferença entre os valores obtidos durante a anestesia e os valores iniciais.
- Nos três grupos de doentes estudados foi conseguida a mesma saturação da hemoglobina com oxigênio, com pressões parciais de oxigênio significantemente diferentes.
- 4. O Ventilador de Takaoka, modelo 850, usado com mistura de oxigênio a 50% fornece uma ventilação eficiente e dentro dos limites de segurança, sem os possíveis riscos de altas concentrações de oxigênio.
- A vantagem do Ventilador de Takaoka modelo 850 sobre o Respirador de Takaoka modelo 600 reside na possibilidade de fornecer misturas gasosas enriquecidas com oxigênio e não oxigênio puro.

Desde a introdução da ventilação artificial no início do século XX o uso de aparelhos descritos e disponíveis vem au-

^(*) Trabalho realizado no Serviço de Anestesia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (Prof. Dr. Gil Soares Bairão).

^(**) Assistente Doutora.

mentando, o que demonstra que se a técnica foi aprimorada, o aparelho ideal não foi atingido.

No Brasil os aparelhos de ventilação de origem estrangeira utilizados em anestesia são pouco acessíveis pelo preço elevado e a difusão dos aparelhos nacionais é cada vez maior. Entretanto, os aparelhos nacionais são desconhecidos no exterior apesar da publicação de trabalhos a respeito datar de mais de 10 anos (2).

O Respirador de Takaoka modelo 600 e o Ventilador de Takaoka modelo 850 têm sido objeto de estudo de alguns pesquisadores nacionais (¹). Em 1970 Nicolletti (°) chamou a atenção para o fato de, no Brasil, poucos especialistas usarem a mistura ar-oxigênio dizendo "...certamente estudo mais acurado necessita ser realizado para demonstrar a vantagem dessa técnica sobre a que utiliza somente oxigênio".

É pois objetivo deste estudo o efeito sobre o pH e os gases do sangue, da ventilação fornecida pelo Respirador de Takaoka modelo 600 e pelo Ventilador de Takaoka modelo 850, usando-se este último com oxigênio puro e mistura ar-oxigênio.

CASUISTICA E METODO

Serviram para este estudo 30 doentes de ambos os sexos e idade variável entre 20 e 60 anos submetidos à anestesia geral para gastrectomias e colecistectomias, em bom estado geral e que não receberam transfusão de sangue no período intra-operatório observado (duas primeiras horas de anestesia).

Esses doentes foram divididos em 3 grupos de 10 de acordo com o método de ventilação empregado:

GRUPO A — Respirador de Takaoka com 100 por cento de oxigênio.

GRUPO B --- Ventilador de Takaoka com 100 por cento de oxigênio.

GRUPO C — Ventilador de Takaoka com mistura aroxigênio resultando em 50 por cento de oxigênio.

Todos os doentes receberam 100 mg de petidina e 50 mg de prometazina por via muscular 45 a 60 minutos antes do início da anestesia.

Respeitando as variações individuais a indução da anestesia foi feita sempre pela injeção intravenosa de tiopental sódco a 2,5 por cento. O relaxamento necessário à intubação foi obtido com succinilcolina a 1 por cento e a sonda usada foi de borracha com balão insuflável.

A manutenção da anestesia foi feita pela inalação de halotano em concentrações variáveis de 1 a 1,5 por cento associada a doses adicionais de 50 a 125 mg de tiopental sódi-

ço. O relaxante muscular usado foi tri-iodo-etilado de galamina a 2 por cento em doses variáveis de acordo com a necessidade.

A ventilação pulmonar foi controlada mecanicamente. O cálculo do volume corrente foi baseado no Nomograma de Radford (11) utilizando como parâmetro o peso corpóreo e o sexo.

De cada doente foram colhidas 5 amostras de sangue arterial em seringa heparinizada e em condições anaeróbias; a primeira amostra (amostra 1) foi colhida da artéria femural imediatamente antes da indução. As subsequentes numeradas de 2 a 5 foram colhidas por punções repetidas da artéria radial, com intervalo de 30 minutos, sendo a amostra 2 colhida meia hora após a instalação da ventilação controlada.

Nessas amostras foram determinados os valores de: potencial hidrogeniônico (pH), pressão parcial de oxigênio (PaO2), pressão parcial de gás carbônico (PaCO2) e saturação de hemoglobina com o oxigênio (SaO2), pelo aparelho: IL pH-blood gaz Analyzer, modelo 313.

Os resultados foram submetidos a análise estatística pelo teste "t" de Student e análise de variância, tendo sido estabelecida a significância ao nível de 5%.

RESULTADOS

A média dos valores encontrados de pH, PaCO2, SaO2 e DB nos diversos momentos observados nos três grupos podem ser vistos nas tabelas 1, 2 e 3.

A análise estatística desses resultados pelo teste "t" de Student mostrou:

1. Variação do pH

GRUPO A: Houve diferença significativa apenas entre as médias das amostras 1 e 2, e 2 e 4. A comparação entre as médias das amostras sucessivas de 2 a 5 não mostrou diferença significante.

GRUPO B: O teste "t" mostrou diferenca significante apenas entre as médias das amostras 1 e 2.

GRUPO C: A comparação entre as amostras sucessivas de 1 a 5 pelo teste "t", também não mostrou diferença significante.

2. Variação da PaCO2

GRUPO A: Houve diferença significante entre as médias das amostras 1 e 2, 1 e 3, 1 e 4 e 1 e 5. Não ocorreu

VALORES MEDIOS DE pH, Paco_p. Pao_p. Sao_p. Nos doentes do grupo A, conforme a amostra

Amostra Parâmetro		1	2	3	4	5
рН	m * d **	7,347 0,04001	7,405 0,04143	7.392 0,05308	7,416 0,06041	7,401 0,07549
PaCO ₂	m	37.38	32,09	32,39	31,12	31.58
	d	3,22035	3,21125	3.96497	5,01128	5,15079
DВ	m	— 4,68	3,79	4,54	— 4,0 2	— 0.47
	d	1,36284	2,72042	2.63911	1.57184	2.72806
\mathbf{PaO}_2	m	81,78	329,0	328.96	344,89	329,61
	d	11,67948	106,31818	95,22417	88,55776	96,58105
SaO ₂	m	95,2	160.00	100,00	100,00	100,00
	\mathbf{d}	9,96494	0,00	0.00	0,00	$0,0\bar{0}$

média

TABELA II

VALORES MÉDIOS DE PH, PaCO, DB, PaO, SaO, NOS DOENTES DO GRUPO B, CONFORME A AMOSTRA

Amostr s Parâmetro		1	2	3	4	5
pH	m	7,378	7.415	7,408	7.423	7,409
	d	0,04662	0.05191	0,07052	0.07543	0,08425
PaCO_2	m d	35.53 4,22901	32.00 2,97658	31,70 3.73036	$31,15 \\ 3.17184$	30.49 3,68072
DB	m	— 3.59	3,14	3,75	3,41	4,27
	d	3,33382	3,25754	3,98755	3,64462	3,89816
\mathbf{PaO}_{2}	m	84.20	361,70	350.82	3 50 ,85	368.97
	d	6,83032	51.05993	65.26060	8 7 ,38486	90.78245
SaO ₂	m	96,17	10 0 00	100.00	100,00	100.00
	d	0,86030	0,000	0.000	0,030	0,000

^{**} desvio padrão

TABELA III

VALORES MÉDIOS DE pH, PaCO₂, DB, PaO₂, SaO₂ NOS DOENTES DO

GRUPO C, CONFORME A AMOSTRA

Amostra Parâmetro		1	2	3	4	5
	m	7,372	7,373	7,365	7,371	7,380
рН	đ	0,06015	0,04165	0,05359	0,04954	0,06272
	m	35.09	34,41	35,66	33,21	33,00
${ m PaCO}_2$	đ	4.83884	4,07879	3,77453	4,82665	6,49581
DB		4,01	4,60	4,35	5,21	4,86
	đ	4,88090	2,19596	2,36936	1,83451	3,18441
PaO ₂	m	83,61	159,26	144,66	155,18	159,73
	ď	13,59652	37.18803	38,38978	33,22227	39,11348
SaO.,	nı	95,60	99,10	98,45	98,70	99,00
	a	1,48249	0,99443	1,25720	0,91894	0,91287

entretanto, diferença significante entre as amostras sucessivas de 2 a 5.

GRUPO B: Mostrou resultados semelhantes aos do grupo A. Houve diferença significante entre as médias das amostras 1 e 2, 1 e 3, 1 e 4, e 1 e 5. A comparação das amostras sucessivas de 2 a 5 não mostrou diferença significante.

GRUPO C: Não houve diferença significante entre as médias dos valores das 5 amostras.

3. Variação da PaO2 e SaO2

GRUPO A: Houve diferença significante entre as médias das amostras 1 e 2, 1 e 3, 1 e 5. Não houve diferença entre as amostras sucessivas de 2 a 5. Os valores de SaO2 nas amostras de 2 a 5 foi 100%.

GRUPO B: Mostrou resultados superponíveis aos do grupo A. Houve diferença significante entre as médias das amostras 1 e 2, 1 e 3, 1 e 4, e 1 e 5. A comparação das amostras sucessivas de 2 a 5 não mostrou diferença significante. A Sa02 nas amostras de 2 a 5 foi de 100%.

GRUPO C: A comparação das médias dos valores de 1 e 2, 1 e 3, 1 e 4, 1 e 5 pelo teste "t" mostrou diferença significante. Não houve diferença nos valores médios das amostras sucessivas de 2 a 5.

4. Variação de DB

Não houve diferença significante nos valores de DB nas. 5 amostras dos 3 grupos em observação.

A análise de variância das médias dos valores dos 3 grupos em estudo e para todas as amostras não mostrou diferença significante para pH, PaCO2 SaO2 e DB.

Quanto a PaO2, a anál se de variância mostrou diferença significante na comparação dos valores médios das amostras de 2 a 5 do grupo C com as dos grupos A e B. A comparação destes dois últimos grupos entre si não mostrou diferença significante.

A comparação entre as médias das amostras 1 nos três grupos não mostrou diferença significante, o que nos permite admitir que a amostragem foi uniforme.

DISCUSSÃO

A observação dos resultados das dosagens de pH e gases do sangue nos 30 doentes mostra uma semelhança entre os grupos A e B principalmente no que se refere à diferença entre as médias das amostras 1 e 2, para todos os parâmetros.

Em ambos os grupos tornou-se evidente uma hipocapnia e aumento de pH da 1.ª para a 2.ª amostra, e os valores restantes simplesmente oscilaram ao redor daquele conseguido na amostra 2.

Os valores de DB mantiveram-se, o que exclue o componente metabólico, podendo-se assim atribuir a elevação do pH à remoção exagerada de CO2, sem remoção idêntica do bicarbonato, o que é habitual na hiperventilação.

Nos nossos doentes ao examinarmos os resultados médios da PaCO2 de cada grupo vemos que, enquanto nos grupos A e B houve diferença significante entre a amostra inicial 1 e as amostras numeradas de 2 a 5, no grupo C os valores de pH e PaCO2 não mostraram diferença significante na comparação das 5 amostras. Assim os resultados de pH e PaCO2 que menos se afastaram do normal foram aqueles dos doentes do grupo C ventilados com ventilador de Takaoka modelo 850, com 50% de oxigênio.

A comparação dos valores médios dos parâmetros dos 3 grupos pela análise de variância mostrou que somente houve diferença significante entre os grupos C de um lado e A e B do outro, com relação aos valores da pressão parcial de oxigênio no sangue arterial.

Uma vez que ospacientes do grupo C receberam oxigênio a 50% parece lógico que as pressões parciais de oxigênio

fossem mais que nos dois grupos que receberam oxigênio a 100%. No entanto, a saturação da hemoglobina nos 3 grupos não mostrou diferença significante. Isto implica em dizer que, nos doentes observados, conseguiu-se a mesma saturação de hemoglobina com oxigênio a 100 ou 50%.

Entretanto a pressão parcial de oxigênio nos pacientes dos grupos A e B era a que se devia esperar após fornecimento de 100% de oxigênio na mistura inspirada.

A diferença de pressão de oxigênio no alvéolo e no sangue arterial P(A-a)O2 seria dada, segundo Marshall e Wyche (7) pela soma das diferenças de:

- a) perda por difusão
- b) perda por desequilíbrio da relação ventilação/perfusão
- c) diferença entre o sangue capilar e arterial sendo que o resultado é uma pressão parcial alveolar de cerca de 105 torr quando a mistura inspirada contém 20,9% de oxigênio.

Nossos pacientes dos grupos A e B deveriam alcançar uma pressão alveolar de oxigênio (PaO2) com valores próximos a 600 torr, porém o maior valor no grupo A foi 489 torr (amostra 1 caso 4) e no grupo B 474 torr (amostra 4 caso 10).

A queda na PaO2 pode provir segundo Nunn (*), de 4 fatores: o 1.º seria o fornecimento insuficiente de oxigênio ao alvéolo, isto é, hipoventilação. Os outros três englobariam aqueles que causam aumento da diferença entre as pressões parciais alveolar e arterial:

- 1.º aumento do espaço morto fisiológico;
- 2.º admissão de sangue "frustro" (não oxigenado) ao sangue oxigenado que deixa os capilares pulmonares: Nunn et al. (¹º) estudaram os "shunts" com respiração espontânea e controlada e n'veis de oxigênio moderados e altos. Encontraram: a) mistura venosa ligeiramente maior na respiração espontânea com os dois níveis de oxigênio; b) mistura venosa ligeiramente maior com níveis mais altos de oxigênio. Além disso Nunn et al. (¹º) não excluem a possibilidade de altos níveis de PaO2 aumentarem a atelectasia;
- 3.º o último fator seria a desigualdade na relação ventilação/perfusão que é comum na ventilação mecânica. No mesmo trabalho os autores concluíram que há necessidade de pelo menos 31% de oxigênio no ar

inspirado para garantir uma PaO2 normal, na respiração mecânica.

O transporte de oxigênio pode ser influenciado pela anestesia pois ele se altera através da concentração de hemoglobina, da afinidade hemoglobina-oxigênio, do consumo de oxigênio e principalmente do débito cardíaco.

Os doentes analisados neste estudo foram considerados clinicamente normais. Assim, as alterações surgidas no débito cardíaco e através dele, no transporte de oxigênio, podem ser atribuídas às técnicas e agentes anestésicos.

O anestésico usado em nosso estudo foi o halotano que pode deprimir diretamente o miocárdio diminuindo o volume sistólico (1,6,12,13,14) a complacência pulmonar (3) em relação direta com a profundidade da anestesia, sendo essa queda da complacência maior que a pressão positiva intermitente.

Laver e eifen (°) afirmam que a margem de segurança da PaO2 para o homem durante a anestesia é de 100 torr e, portanto, qualquer mistura inspirada contendo menos de 50% de oxigênio diminue a margem de segurança. Assim a hipoxia pode ocorrer quando se usa ar para ventilação artificial.

Parece importante verificar se há necessidade do uso de oxigênio a 100% uma vez que se consegue o mesmo resultado quanto à saturação da hemoglobina com 50% na mistura inspirada, e que o oxigênio a 100% pode causar manifestações tóxicas.

Não há contraindicação conhecida para o uso de oxigênio puro a curto prazo. Entretanto, a velocidade do aparecimento de alterações pelo oxigênio é função da pressão inspirada e do tempo de exposição. Portanto, é recomendado diminuir a pressão de oxigênio até limites mínimos adequados, dentro de um critério objetivo (15). É importante notar que o aumento da pressão parcial arterial do oxigênio para uma determinada pressão alveolar diminue à medida que cresce a fração do sangue "frustro".

Uma vez que na ventilação mecânica o aparelho ideal não foi atingido, parece-nos lícito admitir que o melhor aparelho é aquele que menos se afasta dos valores iniciais considerados normais.

O comportamento dos gases do sangue e pH dos doentes dos grupos A e B ventilados com aparelhos diferentes e concentrações iguais revelou-se idêntico. Isso nos leva a concluir que ambos os aparelhos usados com a mesma concentração de oxigênio inspirado levam ao mesmo resultado.

Os resultados obtidos no grupo C, de doentes anestesiados e ventilados com ventilador de Takaoka porém com oxi-

gênio a 50% mostraram resultados que se afastaram menos dos valores da amostra inicial.

Na comparação dos 3 grupos a análise de variância mostrou diferença somente quanto aos valores de PaO2 entre os grupos A e B de um lado e C do outro resultante porém na mesma saturação de hemoglobina para os 3g rupos.

SUMMARY

EFFECTS ON BLOOD GASES OF VENTILATION WITH TWO MODELS OF TAKAOKA'S RESPIRATORS

Two ventilators where studied and pH and blood gases values compared when using 100% oxigen and air-oxigen mixture showing the following results:

- 1 Both ventilators provide the same ventilation when 100 per cent oxigen is used.
- 2 Respiratory alcalosis was induced by automatic ventilation in all the patients in A and B groups when comparing anaesthetic and pre-anaesthetic values. No difference was found in pH and blood gases values in patients from C group.
- 3 All groups showed the same haemoglobin saturation with differents oxigen partial pressure.
- 4 Takaoka's ventilator, 850 when working with 50 per cent oxigen provides effective ventilation without 100 per cent oxigen risks.
- 5 Takaoka's ventilator, 850 has the advantage of giving air-oxigen mixture instead of pure oxigen.

REFERÊNCIAS

- 1. Deutsch S et al Circulatory and respiratory actions of halothane in normal man. Anesthesiology, 23(5):631-638, 1962.
- 2. Dobkin A B The Takaoka respirator for automatic ventilation of the lungs. Can Anaesth Soc J 8(6):556-560, 1961.
- 3. Gold M I & Helrich M Pulmonary compliance during anesthesia. Anesthesiology, 26(3):281-288, 1965.
- 4. Hepp A & Vieira Z E G Ventiladores brasileiros. Rev Bras Anest 22(2): 185-199, 1970.
- 5. Laver M B & Seifen A Measurement of blood oxigen tension in anesthesia. Anesthesiology, 26(1):73-101, 1965.
- 6. Lees M H et al Regional blood flows of the Rhesus monkey during halothane anesthesia. Anest Analg Curr Res 50(2):270-281, 1971,
- 7. Marshall B E & Wyche M O Hypoxemia during and after anesthesia. Anesthesiology, 37(2):178-209, 1972.
- 8. Nicoletti R L Uso do Ventilador de Takaoka 840 em anestesia. Rev Bras Anest 20(2):175-186, 1970.
- 9. Nunn J F Factors influencing the arterial oxygen tension during halothane anaesthesia with spontaneous respiration. Brit J Anaesth 36(5):327-339, 1964.
- 10. Nunn J F et al Factors influencing the arterial oxygen tension during anaesthesia with artificial ventilation. Brit J Anaesth 37(12):898-914, 1965.
- 11. Radford E P et al Clinical use of a nomogram to estimate proper ventilation during aritifical respiration. New Engl J Med 251(22):877-884, 1955.

- 12. Remen D & Porro A Blood gases and pH studies in patients gefore and during upper abdominal surgery. Anesth Analg Curr Res 49(1):11-16, 1970.
- 13. Severinghaus J W & Cullen S C Depression of myocardium and body oxygen consumption with fluothane. Anesthesiology 19(2):165-177, 1958.
- 14. Wyant G M et al The cardiovascular effects of halothane. Can Anaesth Soc J 5(4):384-402, 1958.
- 15. Winter P M & Smith G The toxicity of oxygen. Anesthesiology 37(2): 210-241, 1972.

