NOVO MODELO DE OXIGENADOR DE MEMBRANA ESPIRAL

DR. OTONI M. GOMES (*)

DR. SEIGO TSUZUKI (*)

DR. JOSÉ D. CARINHATO (**)

DR. HOMERO ANDRADE (**)

DR. NELSON L. T. BARROS-MORAES (**)

DR. CÂNDIDO P. MELO (***)

DR. DAGOBERTO S. CONCEIÇÃO (****)

DR. RUY V. GOMIDE AMARAL (*****)

DR. EURYCLIDES J. ZERBINI (******)

AP1950

Um novo modelo de oxigenador de membrana espiral foi construido, com grande área de superfície para trocas gasosas e pequeno volume de perfusato, para uso em circulação extracorpórea. O sistema de fluxo empregado neste oxigenador proporciona integral aproveitamento da membrana exposta.

A oxigenação artificial pelo borbulhamento do oxigênio no sangue (¹) constitui processo universalmente adotado, para perfusão em circulação extracorpórea na rotina de cirurgia cardíaca. Entretanto, o estudo de novos modelos de oxigenadores de membranas vem ganhando interesse progressivo, desde 1962, quando Lee e col. (²) demonstraram que o contato direto gás-sangue por fenômeno de tensão superficial, determina desnaturação das lipoproteínas plasmáticas e conseguinte embolia lipídica.

^(°) Trabalho realizado no Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da U.S.P., com auxílio Banco Nacional de Desenvolvimento, processo FUNTEC n.º 270.

^(*) Docente-Livre de Clínica Cirúrgica da FMUSP.

^(**) Estagiários.

^(***) Eng.º Assistente.

^(****) Médico-Assistente.

^(*****) Docente-Livre de Anestesiologia — Especialista — S.B.A.

^(******) Prof. Titular-Chefe do Departamento de Cirurgia da FMUSP.

A partir do modelo inicialmente proposto por Clowes e Hopkins (3), vários oxigenadores foram construídos, empregando membranas à base de silicone, dispostas paralelamente em sentido horizontal. Desta categoria foram mais difundidos os aparelhos desenhados por Bramson e col. (4), Peirce e Dibelius (5), Landé e col. (6).

Kolobow e col. (7), idealizaram modelo de oxigenadores com membranas dispostas em sentido espiral sendo igualmente satisfatório os resultados obtidos em sua aplicação clínica e experimental. Neste oxigenador a entrada e saída do sangue situam-se diametralmente opostas, ou seja, o sangue venoso entra por uma extremidade do cilindro de mem-

brana e sai pela outra arterializado.

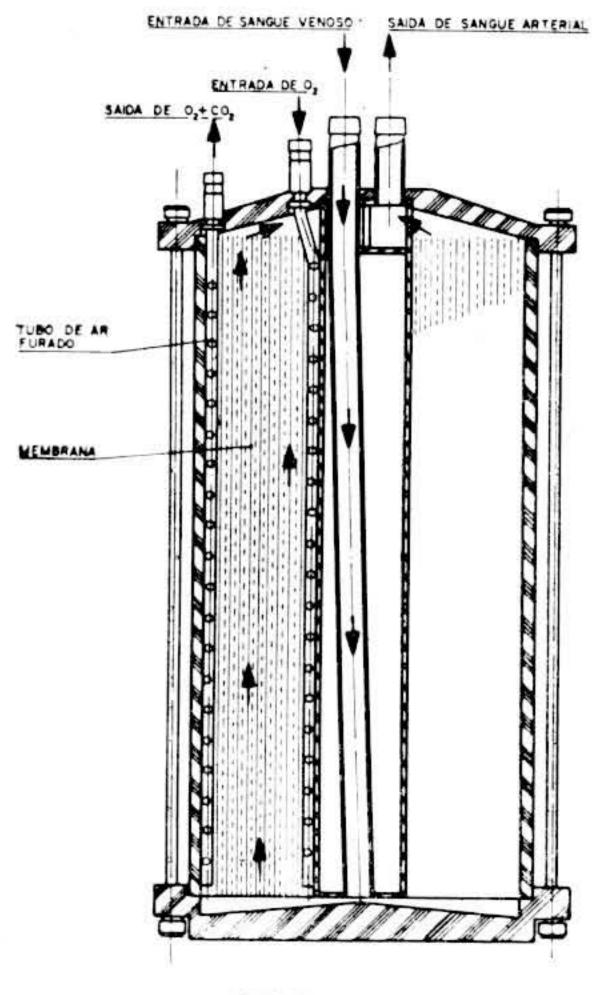
Particularidade inerente a praticamente todos os modelos de oxigenadores até então empregados ,a dificuldade de aproveitamento integral da área de trocas oferecida pelas membranas leva a restrição de aplicação clínica em virtude da capacidade de oxigenação relativamente baixa resultante.

Procurando diminuir esse inconveniente, novo modelo de oxigenador de membrana foi construido, cujas características

fundamentais seguem apresentadas.

DESCRICÃO DO OXIGENADOR

O oxigenador proposto consta essencialmente de um reservatório cilíndrico atualmente construido em acrílico, medindo 310 x 141 mm e totalmente ocluido em uma extremidade. No interior do mesmo situa-se um envelope de membranas de silicone medindo 9.000 x 300 mm. Uma tela de plástico atóxico introduzida dentro do envelope de membrana e com ele enrolada, facilita e orienta a passagem do oxigênio para a arterialização sangüínea. Outra tela de plástico com fios de 1 mm de diâmetro entrelaçados, separa as unidades de membranas, nas diferentes secções da espiral; tem por finalidade impedir o acolamento das membranas e facilitar o escoamento sangüíneo.


O envelope de membranas e respectivas telas interna e externa acha-se enrolado sobre cilindro de aço inoxidável,

medindo 310×40 mm.

A extremidade proximal deste cilindro foi construida de modo a orientar para seu interior o sangue venoso e também escoar para fora do oxigenador o sangue arterializado após ultrapassar o conjunto de membranas (Fig. 1).

O oxigênio entra no envelope de membranas, por sua extremidade interna e sai pela externa, diminuindo dessa forma a resistência ao escoamento e o risco de rotura das

membranas.

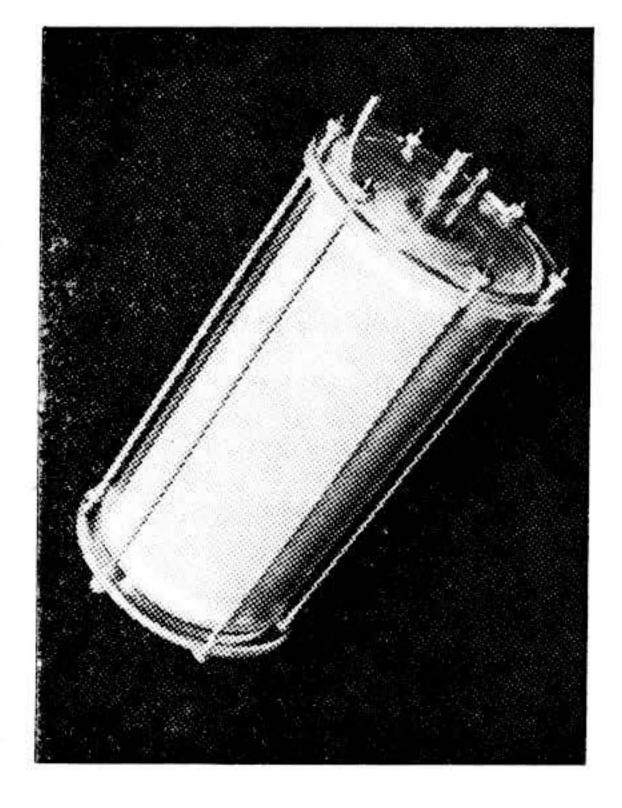


FIGURA 1

Esquema do oxigenador de membranas

FIGURA 2

Oxigenador de membranas

A distribuição central do fluxo sangüíneo, possibilita aproveitamento integral da área de trocas durante a ascenção por entre as membranas, tornando desnecessário o estabelecimento de sistemas de circuitos secundários.

O modelo de oxigenador nas dimensões apresentadas (Fig. 2), oferece 4,8 m² de área total de membranas para as trocas gasosas e possibilita perfusão com volume de 1.000 ml de perfusato.

SUMMARY

NEW MODEL OF SPIRAL MEMBRANE OXYGENATOR

A new model of spiral membrane oxygenator was constructed with a large surface area for gaseous exchange and a low-priming volume, to use in extracorporeal circulation. The flow-system employed in this oxygenator affords integral utilization of the exposed membrane.

REFERÊNCIAS

- 1. Schroder W Uber die bildung statte des harnstoffs. Arch exper Path Pharmakol 15:364, 1882.
- 2. Lee W H, Kumhaer D, Fonkalsrud E W, Schield O H & Maloney Jr J V Denaturation of plasma protein as a cause of morbidity and mortality after intracardiac operation. Surgery 50:29, 1961.
- 3. Clowes Jr G H A & Hopkins A Further studies with plastic films and their use in oxygenating bloods. Trans Am Soc Artif Int Organs, 1:6, 1956.
- 4. Bramson M L, Osborn J J, Main F B, O'Brien M F, Wright J S & Gerbode E A new disposable membrane oxygenator with integral heat exchange.

 J Thorac cardiovasc surg 50:391, 1965.
- 5. Peidce E C, II & Dibelius N R The membrane-lung: studies with a new high permeability co-polymer membrane. Trans Amer Sic Artif Intern Organs, 14:220, 1968.
- 6. Landé A J, Parker B. Subramanian U, Carlson R G & Lillehei C W Methods for increasing the efficiency of a new dialyzer-membrane oxygenator. Trans Amer Soc Artif Intern Organs, 14:227, 1968.
- 7. Kolobow T, Spragg R G, Peirce J E & Zapol W M Extended term (to 16 days) partial extracorporeal blood gas excharge with the Spiral Membrane Lung in Unanesthetized lambs. Trans Amer Soc Artif Int Organs 17:350, 1971.