VENTILAÇÃO MANDATÓRIA INTERMITENTE (VMI) (*)

DR. LUIZ GERMANO REBLIN DE LIMA (**)
DR. JOSÉ RAIMUNDO ARAÚJO AZEVEDO (***)
DR. EDUARDO PEREIRA MARQUES (****)
DRA. MARIAN QUEIROZ CANTISANO (*****)

Os autores descrevem a técnica da ventilação mandatória intermitente (VMI), suas vantagens em relação à ventilação assistida e ventilação controlada, enfatizando sua utilização como método de retirada do ventilador. É proposto um circuito utilizado desde 1975, que oferece diversas vantagens sobre outras alternativas.

Ventilação mandatória intermitente (VMI), é um método de ventilação através de um sistema, que permite ao paciente respirar espontaneamente e receber uma ventilação forçada (mandatória) mecânica a intervalos pré-determinados. É utilizada, atualmente, em várias instituições, como método de ventilação exclusiva desde o início, sendo particularmente vantajosa em pacientes pediátricos, portadores de doença pulmonar obstrutiva crônica (DPOC) e durante a fase de retirada do ventilador (desmame). A ventilação mecânica prolongada pode causar diversas alterações fisiológicas que dificultam a retirada do ventilador, e a utilização de bloqueadores neuromusculares e drogas depressoras do SNC é associada a efeitos colaterais indesejáveis no paciente grave. O desmame

^(*) Trabalho apresentado parcialmente no IV Simpósio Internacional de Terapia Intensiva — RJ, 1975.

^(**) Médico do CTI do Hospital Central do Exército (ex).

Médico Anestesiologista do Hospital Geral de Bonsucesso, INPS, RJ (ex)

^(***) Médico do CTI do Hospital Central do Exército (ex) Médico do CTI do Hospital Cardoso Fontes, INPS, RJ

^(****) Médico do CTI do Hospital da Ordem 3.ª da Penitência — RJ

^(*****) Acadêmica de Medicina — Hospital de Ipanema — INPS — RJ (ex)

da ventilação mecânica prolongada é realizado comumente desconectando o paciente do ventilador, por períodos progressivamente mais prolongados. Esta técnica não é completamente eficiente ou segura, e é usualmente associada a alterações respiratórias, hemodinâmicas e metabólicas, que predispõem à parada cardíaca. A técnica que utiliza um sistema de VMI, permite uma transição gradual, suave e segura da ventilação mecânica para ventilação espontânea, e oferece diversas vantagens em comparação com a ventilação assistida ou controlada.

ALTERAÇÕES INDUZIDAS POR VENTILAÇÃO MECÂNICA PROLONGADA

Diminuição da força muscular e incoordenação de músculos da respiração (3), hipocapnia (1,6,21), e uma certa dependência psicológica do ventilador (17), são comuns na ventilação mecânica prolongada. Graus variáveis de incoordenação de músculos da respiração de magnitude suficiente para interferir com a ventilação espontânea requerida durante a fase de desmane do ventilador, são demonstrados por registros simultâneos de fluxo de gás, volume corrente, circunferência torácica e abdominal, mostrando movimentos incoordenados do diafragma e caixa torácica, interferindo com a ventilação e oxigenação (23).

Hipocapnia causa redução no débito cardíaco (26), alterações na distribuição de ventilação e perfusão intrapulmonar $(\mathring{\mathbf{v}}\mathbf{a}/\mathring{\mathbf{v}})$, com resultante hipoxemia $(^{18,33,34,13})$. Estes efeitos no transporte de oxigênio, associados à redução do fluxo sangüíneo para órgãos vitais (14,32) e desvio para a esquerda na curva de dissociação da oxihemoglobina, dificultando a liberação de oxigênio para os tecidos, podem ser cruciais em pacientes graves. Hipocapnia prolongada, induz uma redução compensatória nos níveis de bicarbonato do líquido cérebroespinhal e reajusta os quimiorreceptores a níveis de PaCO₂ mais baixos que os usuais (19,20), causando hiperventilação, dispnéia e insucesso na tentativa de desmane. Além disso, a níveis de PaCO2 normais ou mesmo sub-normais, a acidose metabólica secundária à hipocapnia irá causar uma queda mais acentuada do pH sangüíneo em relação a uma dada elevação da PaCO₂.

RETIRADA DO VENTILADOR

Desmame da ventilação mecânica é um período crítico, mesmo quando os critérios tradicionais são satisfeitos (24,28).

Acentuada redução de volume corrente, aumento da frequência respiratória e cardíaca, são frequentemente observados, mas não se correlacionam com as alterações nos valores gasométricos nem com a sensação subjetiva de dispnéia (11). Diminuição do débito cardíaco (DC), da disponibilidade de oxigênio para os tecidos e aumento da resistência vascular pulmonar, têm sido observados após a interrupção súbita da ventilação mecânica em pacientes com disfunção miocárdica, sendo esses pacientes, predominantemente casos de pós-operatório de cirurgia cardiovascular (2). O desmame usualmente resulta em aumento da atividade adrenérgica, evidenciada pelo aumento da excreção urinária de metabólitos da adrenalina e nor-adrenalina (29). A combinação de alterações respiratórias, hemodinâmicas e metabólicas, predispõe a catástrofe cardiocirculatória aguda, e a pergunta "Quanto tempo é seguro deixar um paciente fora do ventilador durante o desmame?", não pode ser respondida a menos que se disponha de monitoragem contínua de parâmetros respiratórios, hemodinâmicos e metabólicos de difícil aplicação no paciente e frequentemente indisponíveis em nosso meio.

VENTILAÇÃO MANDATORIA INTERMITENTE

VMI é um método de ventilação através de um sistema, que permite ao paciente respirar uma mistura gasosa umidificada, com uma concentração de oxigênio (FIO₂) determinada e receber uma insuflação mecânica, com a mesma FiO₂, a intervalos pré-determinados (8).

O circuito de VMI por nós utilizado (Figura 1), compreende uma peça em "T", que é conectada ao tubo endotraquear ou tubo de traqueostomia do paciente. Uma extremidade do T é conectada ao ventilador mecânico, enquanto que na restante é adaptada uma válvula unidirecional de baixa resistência (BIRD ou válvula de Digby-Leigh), que dirige o fluxo de gás para o pulmão do paciente. Esta válvula fecha com a insuflação mecânica e abre para permitir respiração espontânea da mistura gasosa vindo de um umidificador ou nebulizador com FiO2 controlada por um misturador de oxigênio-ar (blender). O gás expirado, tanto da ventilação espontânea quanto da mecânica, é exalado pela válvula expiratória do ventilador, onde podemos medir o volume corrente (VT), e frequência respiratória para avaliação em separado da "performance" do paciente e do ventilador. Amostras de gás expirado são coletadas para calcular a relação volume de espaço morto/volume corrente (VD/VT) e outros índices de função respiratória. Medições da capacidade vital são facilmente obtidos quando a freqüência do ventilador é lenta e o paciente cooperativo. Força inspiratória pode ser lida no manômetro do ventilador, quando a válvula unidirecional é ocluída.

PEEP (pressão positiva no final da expiração) pode ser aplicado ao circuito sempre que indicado e a pressão é monitorizada no manômetro do ventilador. O aumento da resistência à ventilação espontânea, devido ao comprimento do tubo (22) é evitado em nosso circuito, pela interposição de outra peça em T entre a válvula unidirecional e o nebulizador ou umidificador. Além disso, qualquer resistência pode ser com-

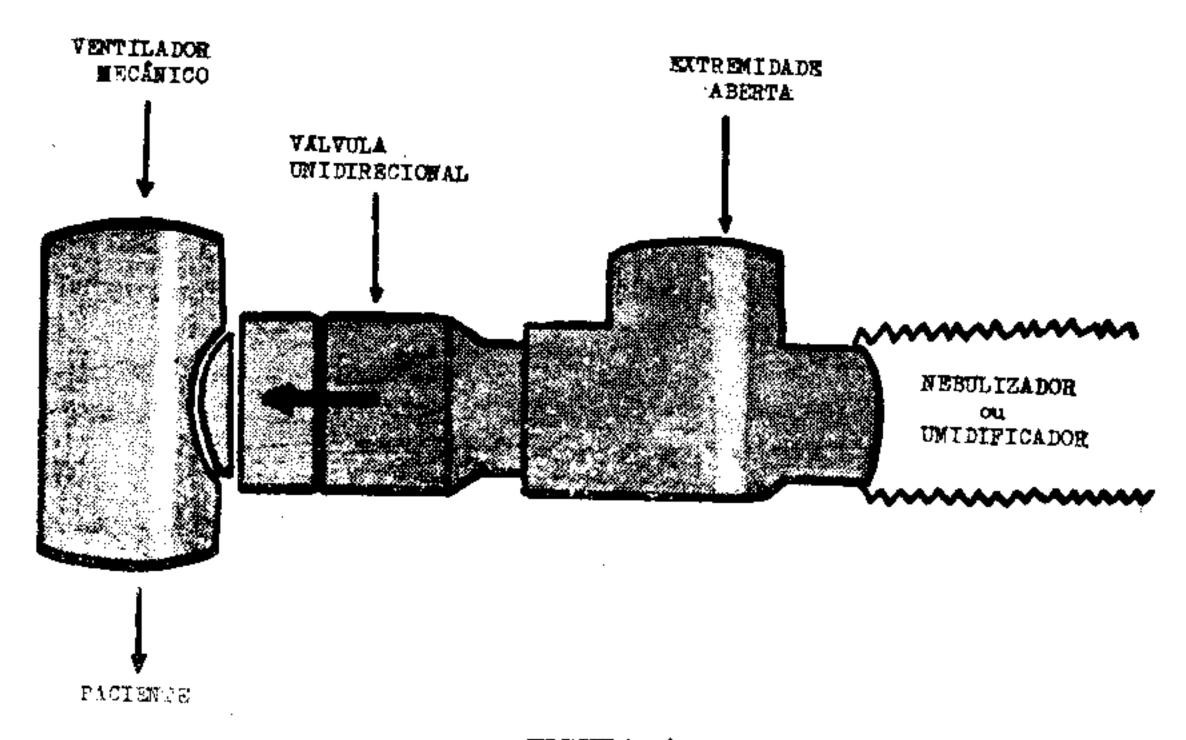


FIGURA 1

Circuito de Ventilação Mandatória Intermitente

pensada pelo ajuste do ventilador. É importante ressaltar que nenhuma medição realizada na válvula expiratória, é falseada pelo fluxo contínuo de gás, de outro modo existente não fora a interposição da peça em T. A monitorização contínua da FiO₂ por um analisador de O₂, permite detectar diminuição da FiO₂, devido à entrada de ar ambiente pela extremidade aberta da peça em T interposta, sendo corrigida pelo aumento do fluxo ou conexão de um reservatório na porção aberta da peça em T. Fluxos de aproximadamente 15 l/min, resultam em FiO₂ do paciente igual à proporcionada pelo misturador de oxigênio-ar ambiente (blender) no paciente grave, que ventila com um volume corrente espontâneo extremamente reduzido. Mas, se necessário, basta aumentar o espaço-reservatório, pela conexão de outro tubo ou simplesmente deslo-

cando a peça em T para junto do umidificador ou nebulizador (12). Comumente, utilizamos ventiladores Bennet MA-I e Bird. O cartucho expiratório da Bird (Bird mark VIII ou usado como acessório), permite a utilização de um único misturador para fazer funcionar o ventilador e o nebulizador ou umidificador. Até recentemente, a freqüência mais baixa obtida com o Bennet MA-I era de 6/min, mas atualmente, o controle de freqüência pode ser modificado, para proporcionar até 1 ciclo a cada 199 segundos. Os ventiladores Bird, proporcionam freqüências satisfatoriamente reduzidas para realizar o desmame.

Quando a VMI é utilizada desde o início da ventilação mecânica, o volume corrente do ventilador é arbitrariamente ajustado para 10-15 ml/kg de peso corporal, a uma freqüência adequada para manter uma PaCO₂ correspondente a um pH normal (7.35 a 7.45). FiO₂ e outros parâmetros de ventilação são ajustados da maneira usual (24).

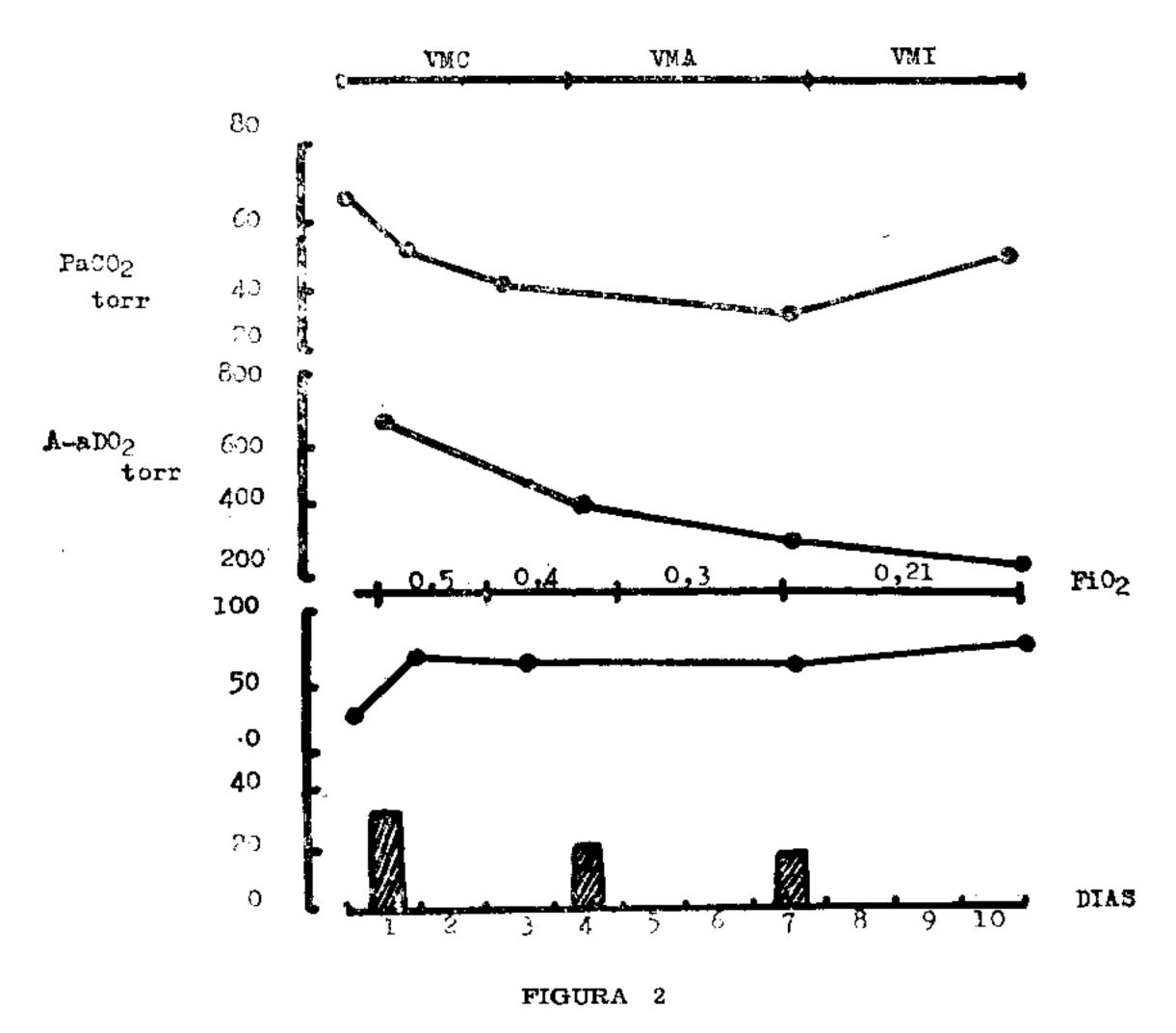
A contribuição ventilatória do paciente é frequentemente negligível no início do tratamento, sendo a ventilação predominantemente mecânica. VMI elimina, virtualmente, a necessidade de bloqueadores neuromusculares e drogas depressoras do SNC para controlar a ventilação, e portanto evitar reações colaterais e morte acidental por desconexão do paciente do ventilador. A experiência do nosso grupo com grande número de pacientes assim tratados, mostra que na imensa maioria dos casos, ocorre perfeita sincronização do paciente com o ventilador. Poucos casos podem requerer uma sedação leve. Qualquer excesso de pressão em uma inspiração espontânea com insuflação mecânica, ou com uma insuflação mecânica coincidente com a expiração do paciente, é corrigida pela presença de uma válvula de segurança (pop-off).

Ventilação e desmame pela técnica de VMI, são partes de um processo contínuo. A frequência do ventilador é reduzida, por incrementos de 1-2 ciclos/min, após os testes de ventilação, de oxigenação, reserva ventilatória e mecânica pulmonar, indicarem condições satisfatórias (3,23,24). A redução da contribuição do ventilador mecânico para a ventilação global do paciente é assim processada, passo à passo, com crescente ênfase no desempenho do paciente, até que a freqüência do ventilador seja zero. O paciente estará então, apto a ser extubado.

CONCLUSÕES

VMI apresenta diversas vantagens, em comparação com a ventilação mecânica assistida ou controlada (Tabela I). A

VMI utiliza a contribuição do paciente para a ventilação total e trabalho da respiração (WB) desde o início, minimizando as alterações fisiológicas induzidas pela ventilação mecânica prolongada. A normalização da PaCO₂ durante a ventilação mecânica é essencial ,e pode ser conseguida através do aumenti do espaço morto mecânico (33,31) ou adicionando CO₂ ao gás inspirado (4). O primeiro método não é satisfatório com a ventilação assistida, porque o paciente hiperventila e compensa o aumento do espaço morto. O segundo método


TABELA I

VUNTAGENS DE VMI EM COMPARAÇÃO COM TECNICAS CONVENCIONAIS:

- Transição progressiva, suave e segura da ventilação mecânica para ventilação espontânea, permitindo:
 - maior segurança
 - avaliação de função respiratória sem desconectar o paciente do ventilador
 - aumento progressivo na força e coordenação dos músculos da respiração
 - redução da ansiedade do paciente durante o desmame
- -- Normalização da PaCO
- Redução ou abolição do uso de bloqueadores neuromusculares e drogas depressoras do SNC para controlar a ventilação
- Maior conforto para o paciente
- Satisfaz a uma faixa mais ampla de requisitos ventilatórios
- Reduz a sofisticação do ventilador (suspiro e ventilação assistida não são necessários
- Permite a utilização de níveis maiores de PEEP (Super PEEP) sem redução do débito cardíaco.

requer um misturador especial para oxigênio-ar ambiente-CO₂ (4). Nossa experiência e a de outros, indica que VMI é um método pelo menos tão eficaz quanto os outros, para a normalização da PaCO₂ (8,16,17). Pacientes gravíssimos, necessitando de ventilação mecânica com níveis muito elevados de PEEP, por vezes superior a 25 torr, têm sido tratados com VMI desde o início (5,15). Provavelmente o padrão ventilatório obtido com VMI mais PEEP, reduz os níveis de pressão intratorácica média e auxilie o retorno venoso, favorecendo um melhor débito cardíaco. A VMI, portanto, permite uma transição progressiva, segura e suave da ventilação mecânica para espontânea, com aumento contínuo da força e coordenação dos músculos da respiração, normalização da PaCO₂, redução do tempo de ventilação e desmame (9), redução de ansiedade durante o desmame do ventilador em condições virtualmente impossíveis, quando outros métodos falharam repetidamente (10).

A Figura 2, mostra a evolução de um paciente com doença pulmonar obstrutiva crônica, descompensado por broncop-

Normalização da PaCO2 e retirada do ventilador pelo método da Ventilação Mandatória Intermitente — VMI JPS, 33 anos, masculino DIAGNÓSTICO: DPOC

neumonia, internado no CTI do Hospital Central do Exército. Foram inicialmente utilizados a ventilação mecânica controlada (VMC) e ventilação mecânica assistida (VMA). Houve melhora clínica progressiva, mas ao fim de alguns dias, o paciente estava marcadamente hipocapnico, com PaCO₂ igual a 15 torr. Várias tentativas de desmame foram feitas, sem sucesso. A instituição de VMI permitiu elevar progressivamente a PaCO₂ até os níveis pré-descompensação do paciente, tornando possível a retirada do ventilador.

AGRADECIMENTOS

Ao Prof. Peter Safar e Dr. Leonardo Rosenfeld, por considerações criticas ao manuscrito, durante o IV Simpósio Internacional de Tratamento Intensivo — RJ, 1975. Ao General de Divisão Médica Geraldo Augusto D'Abreu, ex-diretor do Hos-

pital Central do Exército e atual diretor do Serviço de Saúde do Exército. Ac Dr. Jorge Silva Dias, ex-chefe do CTI do Hospital Central do Exército.

SUMMARY

INTERMITENT MANDATORY VENTILATION

The technic of intermitent mandatory ventilation as well as the advantages over assisted or controlled ventilation are discussed, enphazaring its use as a method of weaning of a ventilator. A T circuit used since 1976 is presented as advantages in relation with others alternatives.

REFERÊNCIAS

- 1. Astrup P, Goetzche H, Neukirch F Laboratory invesigation during treatment of patients with poliomyelitis and respiratory paralysis. Br Med J 1:780-786, 1954.
- 2. Beacht T, Millen E, Grenvik A Hemodynamic response to discontinuance of mechanical ventilation. Crit Care Med 1:85, 1973.
- 3. Bendixen H H, Egbert L D, Hedley-Whyte J et al Respiratory Care. St Louis, C V Mosby Company, 1965.
- 4. Breivik H, Grenvik A, Millen E, Safar P Normalizing low arterial CO2 tension during mechanical ventilation, Chest 63:525, 1973.
- 5. Carter G L, Downs J B, Dannemiller F J Hyper end-expiratory pressure in the treatment of adult respiratory insufficiency. Anesth Analg 54:31, 1975.
- 6. Crane M G, Affeldt J E, Austin E, et al Alveolar carbon dioxide levels in acute poliomyelitis. J Appl Physiol 9:11-18, 1956.
- 7. Didier E P Principles in the management of assisted ventilation. Chest 58:423, 1970.
- 8. Downs J N, Klein E F, Desautels D, Modell J H, Kirby R R Intermittent mandatorý ventilation: A new approach to weaning patients from mechanical ventilators. Chest 64:331, 1973.
- 9. Downs J B, Mitchell L A Intermittent mandatory ventilation following cardiopulmonary by pass. Crit Care Med 2:39, 1974 abstract.
- 10. Downs J B, Perkins H M, Sutton W W Successful weaning after five yars of mechanical ventilation. Anesthesiology 40:602, 1974.
- 11. Gilbert R. Aunchincloss J J H, Pappi D, Ashutoshk. The first few hours off a respirator. Chest 65-152, 1974.
- 12. Gura D, Saidman L J Alveolar oxygen and carbon dioxide concentration during simulated breathing through a t-piece. Effect of breathing pattern, fresh gas flow, and reservoir volume. Crit Care Med 2:11, 1974.
- 13. Johansen S H, Mourkidon S Change in PaO, during artificial ventilation with added dead space. Acta Anaesth Scand 13:241-246, 1969.
- 14. Kety S S, Schmidt C F The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest 27:284, 1948.
- Kirby R R, Downs J B, Civetta J M et al High level positive end expiratory pressure (PEEP) in acute respiratory insufficiency. Chest 67:156, 1975.
- 16. Klein E F Weaning from mechanical breathing with intermittent mandatory ventilation. Arch Surcg 110:345, 1975.
- 17. Margand P M S, Chedoff P Intermittent mandatory ventilation: an alternative weaning technic. Anest Analg 54:41, 1975.
- 18. Michen Felder J D, Fowler W S, They R A CO_9 levels and pulmonary shunting in anesthetized man. J Appl Physiol 21:1471-1476, 1956.

- 19. Mitchell R A Cerebrospinal fluid and the regulation of respiration. In Caro C G (ed): Advances in Respiratory Physiology. Baltimore, Williams and Wilkins, 1966, p 1-47.
- 20. Mitchell R A, Berger A J Neural regulation of respiration. Am Rev Dis 111:206-224, 1975.
- 21. Nunn J F Applied Respiratory Phisiology, with special referente to anaesthesia. London, Butterworths, 1969, p 313.
- 22. Petty T L, IMV vs IMC (Editorial): Chest, 67-630, 1975.
- 23. Pontoppidan H, Geffin B, Lowenstein E Acute respiratory failure in the adult (Three parts) NEJM 287-748, 1972.
- 24. Pontoppidan H, Laver M B, Geffin B Acute respiratory failure in the surgical patient. Adv Surg 4:163, 1970.
- 25. Pontoppidan H, Bushnell L S Respiratory therapy for convalescing surgical patients with chronic lung disease. Clin Anesth. Philadelphia F A Davis Co, 1967.
- 26. Prys-Roberts C, Kelman G R, Greenbaun R, et al: Hemodynamics and alveolar arterial PO2 differences at varying PaCO₂ in anesthetized man. J Appl Physiol 25:80-87, 1968.
- 27. Sahn S A, Lakshminarayan S Bedside criteria for discontinuation of mechanical vetnilation. Chest 63:1002, 1973.
- 23. Shapiro B A Clinical Application of Blood Gases. Chicago: Year Book Publishers, 1973.
- 29. Skillman J J Determinants of weaning from controlled ventilation. Surg Forum 22:198-200, 1971.
- 30. Stetson J B Introductory essay in prolonged tracheal intubation. Int Anesthesiol Clin 8:774, 1970.
- 31. Stoyka W W The realibility and usefulness of the Suwa nomogram in patients in respiratory insufficiency. Canad Anaes Soc J 17:119-128, 1970.
- 32. Sugioka K, Davis D A Hiperventilation with oxygen-possible cause of serebral hypoxia. Anesthesiology 21:135:143, 1960.
- 33. Suwa K, Bendixen H H Change in PaCO, with mechanical dead space during artificial ventilation. J Appl Physiol 24:556-562, 1968.
- 34. Trimble C, Smith D E, Rosenthal M H, et al Pathophisiologic role of hypocarbia in post-traumatic pulmonary insufficincy. AM J Surg 122:633-638, 1971.