Efeitos sobre o Recém-Nascido da Alcalose Respiratória Materna‡

J. L.S. Doval¶, M.S. de Menezes §

Doval J L S, Menezes M S - Newborns effects of maternal respiratory alcalosis. Rev Bras Anest 33: 2: 081 - 085, 1983

The severe maternal hyperventilation effects on the acid-base status and the clinical conditions of the newborn were studied in patients submitted to cesarean section with general anesthesia and controlled ventilation.

In a control group to 10 normoventilated patients, the pH, PaCO₂, PaO₂ base excess and hemoglobin saturation in maternal arterial blood and in umbilical artery and vein were analysed. These values were compared with that obtained in a 10 patients group submitted to severe hyperventilation.

With severe maternal hyperventilation, there was a fall in PaO₂ hemoglobin saturation and PaCO₂ accompanied by an increase in umbilical artery and vein pH and the fetuses were born clinically more depressed, when they were evaluated according to Apgar score.

Key - Words: ACID-BASE STATUS: maternal, foetal; ANESTHETHIC TECHNIQUES: general, inhalation; HYPOXIA; SUR-GERY, obstetric, cesarean section.

Doval J L S, Menezes M S — Efeitos sobre o récem-nascido da alcalose respiratória materna. Rev Bras Anest 33: 2: 081 - 085, 1983.

Os efeitos da intensa hiperventilação materna sobre o equilíbrio ácido-básico e a condição clínica do recém-nascido foram estudados em pacientes submetidas à cesareana com anestesia geral inalatória e ventilação controlada. Em um grupo controle de 10 pacientes normoventiladas, foram analisados o pH, PaCO₂, PaO₂ excesso de bases e saturação da hemoglobina no sangue arterial materno e de artéria e veia umbilicais. Estes valores foram comparados com os obtidos em grupo de 10 pacientes submetidas à hiperventilação intensa.

Com a hiperventilação materna intensa houve queda na PaO₂, saturação da hemoglobina e PaCO₂, acompanhado de aumento no pH, no sangue de artéria e veia umbilicais e nascimento de fetos clinicamente mais deprimidos, avaliados segundo o índice de Apgar.

Unitermos: CIRURGIA: obstétrica, cesareana; EQUILÍ-BRIO ÁCIDO-BÁSICO: materno, fetal; HIPOXIA; TÉC-NICAS ANESTÉSICAS: geral, inalatória.

- ‡ Trabalho realizado no CET SBA do Hospital Universitário da Universidade Federal de Santa Maria, Santa Maria, RS como conclusão de estágio em Anestesiologia de José Luiz Soares Doval.
- ¶ Médico Estagiário do CET SBA da Universidade Federal de Santa Maria. Atualmente médico anestesiologista do Hospital da Guarnição de Bagé, RS
- § Orientadora, Professor Assistente do Departamento de Cirurgia da Universidade Federal de Santa Maria

Correpondência para José Luiz Soares Doval Rua Visconde de Pelotas, 1750 apto. 402 97100 - Santa Maria, RS

Recebido em 27 de julho de 1982 Aceito para publicação em 20 de agosto de 1982

© 1983, Sociedade Brasileira de Anestesiologia

ALCALOSE respiratória, induzida pela hiperventilação, ocorre em mulheres em trabalho de parto devido à dor, medo ou ansiedade. Ocorre, também, em casos de sofrimento fetal em que a mãe é estimulada a respirar profundamente misturas ricas em oxigênio, para melhorar a oxigenação fetal¹⁰. Pode, ainda, ser ocasionada intencionalmente pelo anestesiologista durante anestesia geral com ventilação controlada para cesareanas.

Os efeitos dessas alterações respiratórias sobre o equilíbrio ácido-básico e a condição clínica do recém-nascido têm sido investigados por vários grupos de pesquisadores, tanto em animais^{6,8,9,10,13} como em seres humanos 3,7,11,14

Algumas dessas investigações têm chamado a atenção para efeitos deletérios da alcalose respiratória materna sobre o feto^{8,9,10,11,14}, enquanto outras negam tal hipótese^{3,7}.

A finalidade deste estudo é determinar a influência da hiperventilação materna intensa e consequente alcalose respiratória sobre o equilíbrio ácido-básico e as condições clínicas do recém-nascido.

METODOLOGIA

O estudo foi realizado em 20 pacientes com gestação a termo, submetidas à cesareana por apresentarem desproporção céfalo-pélvica ou cesareana anterior. Todas as pacientes foram classificadas, quanto ao estado físico, como ASA I e sem evidências de sofrimeno fetal. Nenhuma paciente recebeu medicação pré-anestésica.

Após ter sido realizada a punção venosa e iniciada infusão de solução glicosada a 5%, as pacientes foram oxigenadas, durante 3 minutos, com oxigênio a 100% sob máscara, através de um sistema com reinalação. A indução anestésica foi realizada com tiopental sódico (3 a 4 mg. kg⁻¹), seguido de cloreto de succinilcolina (1 a 2 mg. kg⁻¹) para a intubação traqueal.

A anestesia foi mantida, até o nascimento da criança, com inalação da mistura gasosa óxido nitroso/oxigênio a 50% e repiques de succinilcolina (0,5 a 1 mg. kg-1 dose-1). Após o nascimento, foi usado o brometo de pancurônio (0,1 mg. kg-1), fentanil (50 ug. kg-1) e maleato de metilergonovina (0,2 mg). A descurarização foi realizada ao término da cirurgia com atropina (1,5 mg) e neostigmina (2 mg).

As pacientes foram divididas em dois grupos (I e II) e em cada grupo foi empregado um modo de ventilação diferente.

No grupo I, a ventilação foi controlada com ventilador de volume, empregando-se um volume de ar corrente de 7 ml. kg⁻¹ e frequência ventilatória de 8 a 10 movimentos por minuto, de maneira que a PaCO₂ se mantivesse acima de 4 kPa (30 mm Hg).

		G R	UPOI	GRUPO II				
	рН	PCO ₂ kPa (mmHg)	PO ₂ kPa(mm Hg)	BE	pН	PCO ₂ kPa (mm Hg)	PO ₂ kPa (mm Hg)	BE
1	7.345	5,9(44,7)	21,9(164,6)	-4,0	7,601	2,7(20,3)	39,6(298,1)	0,7
2	7,379	4,0(30,4)	23,5(176,4)	-4,5	7,619	1,5(11,0)	40,4(303,9)	-6,4
3	7,388	4,1(31,0)	25,4(190,8)	-5,0	7,705	1,8(13,7)	54,1(406,5)	1,3
4	7,323	6,0(45,1)	16,5(123,9)	-2,4	7,648	2,1(15,9)	50,1(376,4)	0,3
5	7,480	5,2(39,5)	28,6(215,3)	5,1	7.798	1,9(14,4)	45,0(338,7)	7,2
6	7,433	6,0(45,0)	27,8(209,4)	4,8	7,688	2,5(18,5)	45,3(341,0)	4,6
7	7,349	4,0(30,1)	28,3(212,8)	-5,0	7,748	2,2(16,5)	45,2(339,9)	6,4
8	7,433	4,1(31,1)	36,0(270,7)	-2,7	7,732	2,0(15,2)	46,9(352,7)	3,2
9	7,373	5,8(43,6)	17,1(128,9)	-0,1	7,715	2,0(15,4)	45,5(342,4)	4,5
10	7,484	4,0(30,3)	30,9(232,4)	-0,4	7,689	1,5(11,7)	47,6(358,3)	-4,3
χ	7,398	4,9(37,1)	25,6(192,5)	-1,4	7,694	2,0(15,3)	46,0(345,8)	1,7
DP	0,056	0,9(7,0)	6,1(45,6)	3,7	0,059	0,4(2,8)	4,2(31,6)	4.4
p					0,005	0,005	0,005	ns

Tabela I – Valores, médias (X) e desvios padrões (DP) dos gases sangüíneos (em mm Hg), pH e BE (em mmol. l-1) encontrados na gasomètria arterial materna nos grupos I e II.

No grupo II, a ventilação foi controlada manualmente em um sistema com reinalação, de modo que a PaCO₂ se mantivesse abaixo de 2,6 kPa (20 mm Hg). Após o nascimento, ambos os grupos foram ventilados com um minirespirador (Narcomatic-Narcosul), sendo o mesmo ajustado para manter uma ventilação normal.

Durante a retirada do feto, foi colhida amostra sangüínea da artéria radial esquerda da mãe em seringa heparinizada. Antes que o feto ventilasse, o cordão umbilical foi duplamente clampeado a uma distância de 15 centímetros e amostras sangüíneas foram também colhidas de artéria e veia umbilicais, entre as duas ligaduras, em seringas heparinizadas.

PaCO₂, PaO₂, pH, excesso de bases (BE) e saturação da hemoglobina (SO₂) foram determinados em cada amostra sangüínea dentro de 10 minutos, a uma temperatura de 37°C, pelo ABL-2 acid-base laboratory da Radiometer, Copenhagen.

O índice de Apgar no 1.º e no 3.º minuto após o nascimento foi avaliado por pediatra. Foi marcado o tempo decorrido entre a indução anestésica e o nascimento. Os dados obtidos entre os dois grupos, foram comparados usando-se o teste "t" de Student.

RESULTADOS

O tempo médio decorrido entre a indução anestésica e o nascimento no grupo I (13,5 min; DP 2,5) foi menor

que no grupo II (16,6 min; DP 6,2); no entanto, esta diferença não foi significativa. A pressão arterial mantevese dentro dos limites normais nos dois grupos.

Os valores, médias e desvios padrões dos gases sangüíneos, pH e BE encontrados na gasometria arterial materna nos grupos I e II, são mostrados na Tabela I. Houve alteração significativa (p < 0,005) no pH entre os dois grupos, sendo evidente uma alcalose no grupo das pacientes hiperventiladas. A PaCO₂ média do grupo II foi significativamente inferior (p < 0,005) a do grupo I. A PaO₂ (p < 0,005) foi significativamente maior quando as pacientes foram hiperventiladas. Não houve variação significativa no BE entre os dois grupos.

Os valores, as médias e os desvios padrões dos gases sangüínoes, pH, BE e SO₂ encontrados nas gasometrias de artéria e veia umbilicais dos grupos I e II, estão nas Tabelas II e III. O pH de artéria e veia umbilicais foi significativamente mais elevado no grupo II. A PCO2 de artéria e veia umbilicais diminuiu significativamente (p < 0,005) com a hiperventilação materna. Houve uma queda significativa na PaO₂ e SO₂ da artéria e veia umbilical no grupo II. O BE de artéria e veia umbilicais não apresentou diferença significativa entre os dois grupos.

Houve diferença significativa (p < 0,05) do índice de Apgar dos récem-nascidos no 1.º minuto entre os dois grupos. No 3.º minuto esta diferença não foi significativa (Tabela IV).

	GRUI	PO I	G	GRUPO II	
INDICE DE APGAR	x	DP	<u>X</u>	DP	Р
1º min	8,7	0,8	7,4	2,4	0,005
3º min	9,2	0,4	8,3	2,9	ns

Tabela IV – Médias (\bar{X}) e desvios padrões (DP) dos valores encontrados para o índice de Apgar no 1.º e 3.º minutos nos grupos I e II.

DISCUSSÃO

Os resultados obtidos no presente trabalho mostraram que a alcalose respiratória materna, secundária à hiperventilação intensa, levou a uma significativa diminuição na oxigenação fetal. Ocorreu diminuição da PaO₂ e SO₂ em artéria e veia umbilicais, porém, não se observou acidose metabólica fetal como relatam outros autores^{8,9,10,11}, ^{13,14}. A hiperventilação materna aumentou o pH de artéria e veia umbilicais, porém, os fetos nasceram mais deprimidos.

Segundo Moya e col¹¹, o nível crítico da PaCO₂ materna, abaixo do qual ocorre hipoxemia fetal, é de 2,26 kPa (17 mm Hg). Ele atribuiu isto è diminuição na perfusão útero-placentária secundária a vasoconstrição ocasionada pela hipocapnia. Parer e col¹³, entretanto, não observaram alterações no fluxo sangüíneo uterino durante hiperventilação intensa (PaCO₂ média de 1,7 kPa (13 mm Hg)) em macacas prenhes. Coleman³, estudando 18 pacientes submetidas a cesareana sob anestesia geral inalatória com hiperventilação intensa (PaCO₂ e pH médios de 2 kPa (15,7 mm Hg) e 7,618 respectivamente), negou que houvesse efeitos nocivos sobre o feto. Este trabalho foi analisado e criticado por outros autores¹ que chamaram a atenção para a acentuada acidose metabólica e baixa PaO₂ apresentada por alguns desses fetos. Tais níveis

de $PaCO_2$ materno dificilmente são alcançados com hiperventilação espontânea⁷. Já com ventilação controlada, podemos até inadvertidamente chegar a níveis μ_{gj} o baixos quanto estes¹¹.

Morishima e col⁸ estudando em cobaias a hiperventilação materna e seus efeitos sobre o feto, concluiram que a hiperventilação intensa acarreta diminuição da pressão arterial e consequente diminuição da perfusão útero-placentária e, ainda, que existe efeito direto da hipocapnia sobre os vasos uterinos. Levison e col⁶, através de estudos em ovelhas prenhes, procuraram diferençar os efeitos da hipocapnia dos efeitos mecânicos da hiperventilação sobre a oxigenação fetal. Concluiram que a oxigenação fetal é muito influenciada pelo pH materno e que a diminuição do fluxo sangüíneo uterino, que ocorreu devido a efeitos mecânicos da hiperventilação, não interferiu na mesma.

Motoyama e col¹⁰ apontam como causas da diminuição da oxigenação fetal, que ocorre secundária à alcalose materna, o desvio da curva de dissociação da hemoglobina para a esquerda (efeito Bohr); alterações no fluxo sangüíneo uterino; curto-circuito sangüíneo tanto no lado materno como no lado fetal da placenta; e, ainda, alterações no fluxo sangüíneo umbilical.

Visto que a alcalose respiratória materna diminui a

			GRUP	0 1				GRUPO	11	
	рН	PCO ₂ kPa(mm Hg)	PO ₂ kPa (men Hg)	BE	so ₂	Нą	PCO ₂ kPa (mm Hg)	^{PO} 2 kPa (mm Hg)	BE	so ₂
1	7,279	7,3(55,1)	3,4(25,9)	-2,5	30,9	7,410	5,9(44,3)	4,4(33,1)	2,6	65,2
2	7,233	6,1(45,6)	3,4(25,4)	-8,9	35,2	7,294	6,3(47,7)	1,5(11,3)	-1,8	6,2
3	7,348	5,5(41,4)	4,9(36,8)	-2,9	67,5	7,410	6,3(47,4)	1,4(10,7)	4,1	7,6
4	7,276	8,7(65,8)	3,8(28,4)	0,9	45,4	7,466	3,8(28,4)	3,8(28,7)	-1,5	59,9
5	7,354	6,0(45,3)	4,4(33,4)	3,2	67,5	7,546	2,8(20,9)	2,8(20,9)	1,6	44,8
6	7,387	7,3(54,9	6,2(46,8)	5,5	81,4	7,592	3,0(22,6)	4,4(33,2)	2,8	76,5
7	7,303	6,1(45,7)	7,7(57,6)	-1.1	85,4	7,377	4,9(36,6)	1,7(12,9)	-3,2	11,2
8	7,352	6,5(48,7)	4,8(36,0)	0,1	66,7	7,384	4,7(35,5)	1,8(13,7)	-2,1	12,4
9	7,352	6,5(48,4)	5;3(39,6)	0,5	72,0	7,422	5,1(38,4)	2,6(19,4)	-2,4	25,0
0	7,360	6,5(48,8)	4,0(29,8)	1,0	54,8	7,442	4,1(30,9)	2,7(20,7)	-2,5	36,7
X	7,324	6,6(50,0)	4,8(35,9)	-0,4	60,7	7,434	4,7(35,3)	2,7(20,5)	-0,2	34.5
Р	0,048	0,9(6,9)	1,3(10,1)	3,8	18,6	0,085	1,3(9,5)	1,1(8,6)	2,6	26,0
р			····		-	0,005	0,005	0,005	ns	0,0

Tabela II – Valores, médias (X) e desvios padrões (DP) dos gases sangüíneos (em mm Hg), pH, BE (em mmol. 1-1) e SO₂ (em %) encontrados na veia umbilical nos grupos I e II.

			G R U P O	I				GRUPO	ΙΙ	
	рН	PCO ₂ kPa(mm Hg)	PO ₂ kPa (mm Hg)	BE	so ₂	рН	PCO ₂ kPa (mm Hg)	PO ₂ kPa(mm Hg)	BE	so ₂
ì	7,246	7,5(56,4)	1,8(13,6)	-4,3	20,5	7,301	6,5(49,3)	2,9(22,1)	-2,8	31,0
2	7,200	7,2(54,0)	2,3(17,4)	-1,0	20,2	7,274	7,2(54,1)	1,5(11,0)	-5,1	5,6
3	7,299	6,0(45,0	3,5(26,2)	-4,7	41,7	7,320	7,7(57,6)	0,9(7,5)	1,7	2,1
4	7,248	9,2(69.0)	2,9(21,6)	0,0	26,5	7,373	5,2(39,3)	2,1(16,1)	-2,3	18,8
5	7,310	7,5(56,7)	3,2(24,4)	1,2	52,7	7,407	3,3(25,1)	2,2(16,9)	-9,3	22,7
6	7,315	8,0(60,1)	2,7(20,2)	1,0	25,0	7,518	3,8(28,9)	2,7(20,7)	2,1	42,3
7	7,297	7,1(53,7)	6,7(50,8)	-4,0	82,8	7.316	5,9(44,2)	0,9(6,8)	-4,1	1,6
8	7,334	6,7(50,7)	4,0(30,5)	-0,3	54,8	7,293	5,7(43,1)	1,1(8,4)	-5,4	7,2
9	7,273	7,5(56,7)	2,8(20,8)	-2,0	25,8	7,330	6,3(47,2)	1,8(13,6)	-3,6	10,1
10	7,344	6,5(49,1)	3,8(29,0)	0,0	52,0	7,339	5,7(42,6)	1,6(11,9)	-2,8	8,1
X	7,286	7,3(55,1)	3,4(25,4)	-2,3	40,2	7,347	5,7(43,1)	1,8(13,5)	-3,1	14,9
DP	0,044	0,9(6,5)	1,4(10,3)	3,4	20,4	0,071	1,3(10,1)	0,7(5,4)	3,3	13,5
p						0,025	0,005	0,005	ns	0,005

Tabela III – Valores, médias (X) e desvios padrões (DP) dos gases sangüíneos (em mm Hg), pH, BE (em mmol. 1-1) e SO₂ (em %) encontrados em artéria umbilical nos grupos I e II.

oxigenação fetal, seria a acidose respiratória benéfica para o feto em sofrimento? Tal prática é desancoselhável pois a hipoventilação traz riscos para mãe e feto. A hipoventilação durante anestesia, mesmo com oxigênio suplementar, predispõe a disritmias cardíacas, hipertensão arterial e aumenta o risco materno de desenvolver pneumonia e atelectasia no pós-operatório². A acidose materna leva a acidose fetal¹², diminuindo o gradiente materno-fetal do pH, podendo levar a hipoxia fetal por reduzir a afinidade do oxigênio pela hemoglobina, dificultando assim, a captação do oxigênio pelo feto ao nível da placenta⁵.

Se a transferência de oxigênio da mãe para o feto dependesse primariamente do gradiente materno-fetal da PaO₂⁴, um aumento na PaO₂ materna resultaria em um aumento paralelo na oxigenação do feto. Rivard e col¹⁵, estudando a relação entre as tensões do oxigênio materno e fetal em ovelhas prenhes, mantendo constante a PaCO₂ e pH maternos, demonstraram que na ovelha hipoxêmica a administração de oxigênio resultou em um acentuado aumento na PaO₂ da carótida fetal, enquanto que, em animais bem oxigenados, o aumento foi mínimo. Isto mostra que deve haver uma série de fatores, que ainda não estão bem esclarecidos, a intervir no transporte de oxigênio através da placenta.

No presente estudo, apesar do acentuado aumento na

PaO₂ materna das pacientes hiperventiladas, houve uma queda na oxigenação fetal. Com exceção de duas pacientes (casos 1 e 6), todas as outras apresentaram PaCO₂ abaixo do nível crítico indicado por Moya e col¹¹. No entanto, nenhum feto apresentou pH menor que os do grupo controle e mesmo assim nasceram mais deprimidos. No 3.º minuto todos os fetos, com uma única exceção (caso 3), já estavam bem recuperados.

Shnider¹⁶ acredita que fetos com boas reservas não fiquem acidóticos devido ao metabolismo anaeróbio. Já os fetos com suas reservas no limiar ou em situações precárias, podem reagir adversamente até mesmo a graus moderados de hiperventilação materna¹⁶.

A hiperventilação materna e consequente alcalose respiratória pode modificar o estado ácido-básico do feto, acarretanto perigo para o mesmo. Embora os fetos de mães hiperventiladas tenham nascido com pH mais alto que os do grupo controle, isto não melhorou suas condições clínicas ao nascerem, pelo contrário, estes fetos apresentaram-se mais deprimidos e hipoxêmicos que os do outro grupo. A elevação do pH fetal aumenta a afinidade do oxigênio pela hemoglobina, prejudicando a sua liberação a nível tecidual. O presente estudo vem confirmar que a alcalose respiratória materna é nociva ao feto, devendo, portanto, ser evitada.

REFERÊNCIAS BIBLIOGRÁFICAS

- 1. Acheson F, Cook C D, Motoyama E K, Rivard G Effect of maternal hypocapnia. Lancet 1: 1159, 1967.
- 2. Battaglia F C Dangers of maternal hyperventilation. J Pediat 70: 313 314, 1967.
- 3. Coleman A J Absence of harmful effects of maternal hypocapnia in babies delivered at caesarean section. Lancet 1:813 814, 1967.
- 4. Crawford JS Maternal hypocapnia and the foetus at section Br J Anaesth 45: 534, 1973.

EFEITOS SOBRE O RÉCEM-NASCIDO DA ALCALOSE

- 5. Hollmen A, Jagerhorn M Does increased maternal PaCO₂ during general anaesthesia for caesarean section improve foctal acid-base parameters? Acta anaesth Scand 16: 221 229, 1972.
- 6. Levinson G, Shnider S M, deLorimier A A, Steffenson J L Effects of maternal hyperventilation on uterine blood flow and fetal oxygenation and acid-base status. Anesthesiology 40: 340 347, 1974.
- 7. Lumley J, Renou P, Newman W, Wood C Hyperventilation in obstetrics. Amer J Obstet Gynec 103: 847 854, 1969.
- 8. Morishima HO, Moya F, Bossers AC, Daniel SS Adverse effects of maternal hypocapnia on the newborn guinea pig. Amer J Obstet Gynec 88: 524 529, 1964.
- 9. Motoyama E K, Rivard G, Acheson F, Cook C D Adverse effect of maternal hyperventilation on the foetus. Lancet 1: 286 288, 1966.
- 10. Motoyama E K, Rivard G, Acheson F, Cook C D Tue effect of changes in maternal pH and PaCO₂ on the PaO₂ of fetal lambs. Anesthesiology 28:891-903, 1967.
- 11. Moya F, Morishima HO, Shnider S M, James L S Influence of maternal hyperventilation on the newborn infant. Amer J Obstet Gynec 91:76 84, 1965.
- 12. Newman W, Braid D, Wood C Fetal acid-base status. I: Relationship between maternal and fetal PaCO₂. Amer J Obstet Gyncc 97: 43 51, 1967.
- 13. Parer J T, Eng M, ACBA H, Ueland K Uterine blood flow and oxygen uptake during maternal hyperventilation in monkeys at cesarean section. Anesthesiology 32: 130 135, 1970.
- 14. Peng A T C, Blancato L S, Motoyama E K Effects of maternal hypocapnia v. eucapnia on the foetus during caesarean section. Br J Anaesth 44: 1173 1178, 1972.
- 15. Rivard G, Motoyama E, Acheson F, Cook C, Reynolds E The relation between maternal and fetal oxygen tensions in shepp. Amer J Obstet Gynec 97: 925 930, 1967.
- 16. Shnider S M, Moya F A Mãe, o Anestesiologista e o Recém-nascido. 1.º Ed, Rio de Janeiro, Editora Guanabara Koogan, 86 92, 1978.

Resumo de Literatura

METABOLISMO CEREBRAL LOCAL DE GLICOSE EM CÃES RECÉM-NASCIDOS NORMAIS: EFEITOS DA HIPOXIA E DA ANESTESIA PELO HALOTANO

A utilização da glicose em 36 estruturas cerebrais foi medida em cães recém-nascidos normais acordados, hipoxemiados agudamente ou anestesiados com halotano. O método empregado foi a autorradiografia com a 2-deoxiglicose $C^{1\,4}$.

Os resultados mostraram que a utilização da glicose foi maior no núcleo vestibular e outros núcleos cinzentos do tronco encefálico e declinou progressivamente no sentido caudal-craniano, através do neuro-eixo, nos animais normais. O menor metabolismo foi encontrado nas estruturas de substância branca. A anestesia pelo halotano a 1,5% determinou poucas alterações no metabolismo local da glicose, a mais importante ocorrendo nas estruturas do sistema auditivo. Houve aumento do metabolismo no núcleo interpenducular. A hipoxia aguda (PaO₂ = 12 mm Hg) induziu efeitos heterogêneos: o metabolismo aumentou em algumas estruturas da substância cinzenta, diminuiu no hipotálamo e aumentou muito na substância branca sub-cortical e corpo caloso. Nesses animais a concentração de lactato aumentou 10 a 12 vezes na substância cortical cinzenta e sub-cortical branca, mas as concentrações de glicose, ATP e fosfocreatinina diminuiram em maior extensão na substância branca.

Os autores sugerem que durante a hipoxia o grau de glicolise da substância branca excede o suprimento de substrato e a quantidade de glicose, disponível, é o fator limitante para a produção local de energia. Esse mecanismo pode contribuir para a lesão da substância branca que muitas vezes ocorre após hipoxia no período perinatal.

(Local cerebral glicose metabolism in newborn dogs: Effects of hypoxia and halothane anesthesia. T E Duffy, M Cavazzuti, N F Cruz, L Sokoloff. Ann Neurol. II: 233 - 246, 1982).

COMENTARIOS: Esse trabalho experimental mostra a necessidade de se fornecer glicose, em quantidade generosa, à parturiente, particularmente quando ela está em jejum prolongado ou houver possibilidade de hipoxia ou isquemia do recém-nascido. (Cremonesi E).

Resumo de Literatura

REGULAÇÃO DO FLUXO SANGUÍNEO CEREBRAL LOCAL EM CÂES RECÉM--NASCIDOS NORMAIS E HIPOXICOS

O fluxo sangüíneo cerebral local foi medido em 32 estruturas neuro-anatômicas em cães recém-nascidos pelo método de autorradiografia utilizando a 4-iodo antipirina C¹⁴ como indicador difusível. O fluxo sangüíneo foi medido em condições de hipercapnia e hipoxia aguda e foi comparado com o consumo local de glicose.

Nos animais normais, normocapneicos, os mais altos fluxos foram encontrados nos núcleos cinzentos do tronco cerebral, no bluvo e núcleo pôstero-lateral do tálamo. Os fluxos mais baixos foram observados na substância branca. A resposta vasodilatadora à hipercapnia e à hipoxia foi maior nas estruturas de substância cinzenta do tronco cerebral, corticais e diencefálicas e menor na substância branca. Houve uma correlação entre fluxo sangüíneo e consumo local de glicose nos animais normais. Em condições de hipoxia não houve correlação evidente, mas parece que há uma correlação negativa. Isso mostra que nos recém-nascidos existe normalmente uma associação entre fluxo sangüíneo e metabolismo cerebral locais e que em condições de hipoxia ocorre uma glicolise anaeróbica que não é compensada adequadamente por hiperemia. Isso sugere que a lesão da substância branca, comum em episódios de asfixia do recém-nascidos pode decorrer, pelo menos em parte, da capacidade limitada da substância branca em responder à hipercapnia e à acidose lactica com vasodilatação.

(Regulation of local cerebral blood flow in normal and hypoxic newborn dogs. Cavazzuti M, Duffy T E. Ann. Neurol. II: 247 - 257, 1982).