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Abstract  

Perioperative Goal-Directed Therapy (PGDT) has significantly showed to decrease 

complications and risk of death in high-risk patients according to numerous meta-

analyses. The main goal of PGDT is to individualize the therapy with fluids, inotropes, 

and vasopressors, during and after surgery, according to patients’ needs in order to 

prevent organic dysfunction development. In this opinion paper we aimed to focus a 

                  



 

 

discussion on possible alternatives to invasive hemodynamic monitoring in low 

resource settings.  

 

The burden of postoperative complications 

Epidemiological studies suggest that 4.8 billion people are unable to access safe surgical 

treatments.[1] According to estimations, an expansion of surgical services to address 

unmet needs would increase total global deaths to 6.1 million annually, of 

which 1.9 million deaths would be in Low- and Middle-Income Countries (LMIC). 

Perioperative complications are common in high-risk patients undergoing moderate or 

major surgeries and are associated with longer ICU stays, mortality, and higher costs.[2] 

Many qualities improvement programs have been proposed to face the challenges of 

perioperative complications.[3]  

 

Goal-directed perioperative therapy 

Perioperative Goal-Directed Therapy (PGDT) has been always about individualization 

of treatment according to patients’ needs and has significantly shown to decrease 

complications and risk of death in selected high-risk patients, if applied at the right 

time.[4] Many RCT and meta-analyses, including network meta-analysis have 

demonstrated consistently that the most effective goals of therapy are those using 

accurate methods to evaluate fluid responsiveness and therapeutic goals that include 

improving flow, therefore Cardiac Output (CO), and Oxygen Delivery (DO2).[5-9]  

A continuum of treatment with fluids and hemodynamic management takes 

place before, during and after surgery. There is still large variability in the amounts of 

fluids given to these patients. In a large study in patients undergoing colon and 

orthopedic surgeries, the authors found increased morbidity and costs for both the 

highest and the lowest 25 percentiles of fluids given.[10] An observational study 

conducted in ICUs around the world indicated that in 43% of the cases no 

hemodynamic variable was used to guide fluid resuscitation and safety limits were 

rarely used.[11]  

The aim of goal-directed therapy is to prevent an imbalance between DO2 and 

oxygen consumption in order to avoid the development of multiple organ 

dysfunctions.[2] Cardiac output, the product of Stroke Volume (SV) and heart rate, is an 

important determinant of DO2. SV depends on ventricular end-diastolic volume 

(preload) and contractility. If hypoperfusion or hypotension is present, the clinician 

                  



 

 

must decide whether intravenous fluid will augment CO. The safest approach is to test 

SV response to fluid boluses (bolus-induced increase in SV > 10%) or to predict 

responsiveness when CO monitoring is not available. If these derangements are not 

solved after initial fluid resuscitation, the next step is to decide whether further 

intravenous fluid will augment CO or if other measures (such as vasopressors or 

inotropes) should be used to adjust the hemodynamic management.  

The utilization of CO monitoring In the perioperative period has been shown to 

improve outcomes if integrated into a GDT strategy, particularly in adult non-cardiac 

surgical patients undergoing major abdominal surgery.[5-9] International Societies 

Guidelines do recommend PGDT, however the adoption is still very poor.[12] Possible 

causes for that are lack of knowledge regarding monitoring techniques, costs and lack of 

available equipment, or problems with reimbursement. Therefore, a discussion about 

possible alternatives to invasive hemodynamic monitoring in low resource settings is 

extremely essential. 

 

Nothing less than central venous and arterial lines  

In low-resource hospital settings, CO monitoring is not available and commonly used 

hemodynamic variables in the perioperative period are heart rate, diuresis, arterial 

pressure, lactate, and blood gas. The problem is the lack of accuracy of these measures 

in the case of more complex patients. As we know well, in surgical patients, it is all 

about delivering oxygen to the tissues. We can do better by integrating and interpreting 

a set of data provided from central and arterial lines in place along with point-of-care 

blood gases and lactate. These tools would provide measures of Mean Arterial Pressure 

(MAP), Pulse-Pressure Variation (PPV), Central Venous Pressure (CVP), Central-

Venous Oxygen Saturation (ScvO2), Oxygen Extraction Rate (O2ER), that is the 

difference between arterial Oxygen Saturation (SaO2) and SvO2/over SaO2, and 

venoarterial carbon dioxide difference (CO2-gap), the difference between venous and 

arterial PCO2. In addition, a simple Foley catheter in our set of tools adds intra-

abdominal pressure. By targeting MAP and these indices we are able to manage 

fluids[13] and other supportive treatments with greater safety (Fig. 1).  

 

Important endpoints: arterial pressure 

The incidence of intraoperative hypotension is very high, with 90% of the patients 

presenting at least one episode of hypotension during operations and one third of them 

                  



 

 

even before skin incision.[14] Intraoperative hypotension is associated with harm such 

as myocardial and acute kidney injury, overall organ injury and mortality. In an RCT, 

the IMPRESS trial demonstrated that targeting an individualized systolic blood pressure 

within 10% of the reference preoperative value with continuous norepinephrine infusion 

reduced the risk of postoperative organ dysfunction in moderate and high-risk surgical 

patients.[15] Arterial lines have been relatively safe and easy to implement. Expert 

consensus recommends monitoring and optimization of MAP by keeping MAP > 

65 mmHg or 10–20% target within preoperative baseline.[16]  

 

Important endpoints: pulse pressure variation  

The most frequently asked question daily in our ICUs is “will this patient respond to 

fluid challenge?”.[17] It means that the bolus of fluids will improve CO and therefore 

tissue perfusion. In low-resource intraoperative settings, Pulse Pressure Variation (PPV) 

can be used as an indicator to give fluids.[13] For PPV monitoring we just need the 

curves obtained from an arterial line and a simple bedside monitor. The conditions in 

the operating room as well as in the early postoperative period with sedated and 

mechanically ventilated patients are usually good for its use. In a systematic review 

of 14 studies a 49% reduction in postoperative morbidity with dynamic monitoring-

guided fluid strategies was reported.[18] Nonetheless, attention to the limitations of the 

method is essential (Fig. 2).[19] According to experts’ opinion it is important to use a 

“validity criteria checklist” before using PPV (or similar methods) to estimate fluid 

responsiveness, then to give iterative small fluid boluses to maintain intraoperative PPV 

below the threshold values that define fluid responsiveness.[20]  

PPV is a very reliable predictor of fluid responsiveness as long as we respect the 

limits of the method. The use of low Tidal Volume (TV) ventilation is a limitation for 

the use of PPV. Both in the OR and in the ICU, we should use protective ventilation – 

6 mL.kg
-1

 of predicted BW. But this limitation can be overcome by using “tidal volume 

challenge”.[21] The “TV challenge” is a simple test that can be performed easily at the 

bedside by increasing TV to 8 mL.kg
-1

 PBW, for 1 minute and observing the change in 

PPV. This test does not require a CO monitor, what makes it especially applicable in 

low resource settings.  

 

 

 

                  



 

 

Important endpoints: Oxygen (O2) and carbon dioxide (CO2)-derived indices 

 

Oxygen extraction ratio 

Oxygen and CO2 derived indices combined are very helpful in the perioperative period. 

Point-of-care technologies made these tools even more available and affordable. ScvO2 

and O2ER are parameters related to global perfusion. Trends in ScvO2 can be used to 

reflect imbalances between DO2/VO2, particularly in the ICU. Increase of 2% or more 

in SvO2 during fluid loading after major vascular surgery or cardiac surgery indicates 

fluid responsiveness.[22] In a Randomized Controlled Trial (RCT) from 9 hospitals in 

Italy the target was to keep O2ER at values < 27% according to an algorithm of GDT 

in 135 patients undergoing major abdominal surgeries.[23] They demonstrated 

decreased number of patients with organ failures, declining from 29.8% to 11.8%.  

 

Serum lactate 

Serum lactate, a commonly used marker of global perfusion in the ICU, is an 

independent predictor of death due to MOF after non-cardiac surgery in high-risk 

patients.[24] Nonetheless, failure of lactate concentrations to decrease over time is 

associated with worse outcomes in surgical patients. Lactate-guided therapy after ICU 

admission improved outcomes in a heterogeneous population in whom half were 

surgical patients.[25] In spite of well accepted in postoperative care as a marker of 

hypoperfusion, its use is limited as a therapeutic target during the intraoperative period. 

Due to anesthesia and possible hypothermia there is a smaller increase in serum lactate 

levels.[2] 

 

Veno-arterial difference of CO2 (CO2-gap) 

There is an inverse relationship between CO and CO2-gap. CO2-gap increases if 

systemic blood flow reduces. It is a good indicator of the inadequacy of CO relative to 

the actual global metabolism. A CO2-gap higher than 5 or 6 is suggestive of reduced 

blood flow, either by a low CO, usually the case in the perioperative period, or 

microcirculatory dysfunction.[26] A CO2-gap ≥ 5.0 mmHg before surgery was 

associated with more postoperative complications, mainly shock, renal failure and 

infection, and hospital mortality in adult high-risk patients.[24] A retrospective study 

evaluated data from 70 patients undergoing major abdominal surgery by measuring 

CO2-gap hourly until the end of the surgery. CO2-gap of 6 or higher was able to predict 

                  



 

 

postoperative complications.[26] Another study in 60 patients undergoing coronary-

artery bypass grafting with ScvO2 > 70%, assuming they would be in an adequate 

circulatory status, divided patients in High and Low CO2-gap groups after ICU 

admission.[27] The High CO2-gap group had significantly lower DO2 and mesenteric 

flow, higher cytokine levels, and more complications. A before/after study reported 

better outcomes by targeting MAP, PPV, as a parameter of fluid responsiveness, and 

CO2-gap as a surrogate for CO, with less complications and lower 90-day mortality 

rate.[28] One RCT aiming at SvO2 of > 75% and CO2-gap < 6 mmHg found improved 

oxygen-derived parameters, lower length of ICU stays and shorter MV duration in the 

CO2-gap group.[29] It is necessary to confirm these findings in a larger RCT.  

 

Exhaled CO2 with capnography 

While we have an inverse correlation between CO2-gap and CO, there is a direct 

correlation between changes in exhaled CO2 (EtCO2) and CO, as long as we have a 

condition of constant minute Ventilation and CO2 production (VCO2). This condition is 

feasible in sedated patients, with constant tidal volume and short periods of time of 

observation in which metabolism is constant. EtCO2 measured by mainstream CO2 

sensors during Passive Leg Raising (PLR) tests are able to track changes in CO in ICU 

patients.[26] Other authors reported PLR-induced increases in CO and EtCO2 strongly 

correlated (R2 = 0.79; p < 0.0001), besides increases ≥ 5% in EtCO2 during the test 

being predictive of fluid responsiveness with 90.5% (95% CI 69.9–98.8%) 

Sensitivity/Specificity in surgical patients.[30] Thus, it could provide a noninvasive and 

easily available method at the bedside for predicting fluid responsiveness in paralyzed 

patients on mechanical ventilation. Fluid responsiveness tests should preferably be 

performed with an automated bed. Nonetheless, EtCO2 variation was correlated with 

changes in CO even when induced by a simplified PLR maneuver with a dedicated ICU 

bed.[31] One recent meta-analysis confirmed that EtCO2 variation performed 

moderately in predicting fluid responsiveness during the PLR test in patients with 

mechanical ventilation.[32]  

  

                  



 

 

Limits of safety for fluid administration: central venous and intra-abdominal 

pressures 

Another important point is when we should stop giving fluids or start deresuscitation. 

Assuming the limitations of CVP to evaluate fluid responsiveness, extremes values of 

CVP can be used to stratify patients of lower or higher risk of harm if receiving further 

fluid loading.[33] In addition, a high CVP is a major factor compromising organ 

perfusion. Systemic Perfusion Pressure (SPP) is dependent on the difference between 

MAP and CVP (SPP = MAP - CVP) and mishandling these parameters is associated 

with organ congestion and dysfunction, particularly acute kidney injury.[34,35]  

There is an association between Intra-Abdominal Pressure (IAP) and fluid 

balance, fluid loading or fluid removal.[36] IAP monitoring with a Foley manometer in 

the bladder is a very simple, reliable, and cost-effective clinical tool for patients at risk 

of Intra-Abdominal Hypertension (IAH). IAH is frequently associated with positive 

fluid balance and organ dysfunction after complex operations.[37]  

 

Conclusion  

Indices and pressure parameters were depicted in Table 1. Of course, most of these 

proposals come as suggestions based on current literature and our own bias and should 

be tested in larger RCTs. Furthermore, bedside ultrasound/echocardiography is a 

promising tool for hemodynamic monitoring in low resource settings, including 

assessment of cardiovascular function, differentiation between causes of shock, 

prediction of fluid responsiveness, and extravascular lung water, but it still demands 

initial investment and training.[38] Nonetheless in the absence of cardiac output 

monitors, these parameters may be a readily available and less expensive. In fact, 

hemodynamic optimization therapy based on CO measurements is cost-effective and 

would increase efficiency and decrease the burden on the public health system.[39] 

Expert consensus recommends discussions with national/hospital decision-makers about 

cost-effectiveness, as the extra cost due to hemodynamic monitoring when 

implementing a perioperative GDT strategy is counterbalanced by the reduction in 

postoperative complications and hospital length of stay in high-risk surgeries.  

The main limitation of our review is the fact that it was not a systematic review. 

Non-systematic reviews are influenced by authors’ own opinions and practices and may 

not consider other technologies such as noninvasive ones. Nevertheless, costs associated 

with noninvasive tools are in general impeditive for low-resources settings.  
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Table 1 Tools for hemodynamic optimization and adequate management in the 

operating room and ICU. 

Parameters Goals 

Mean arterial pressure (MAP) [15] Within 10% resting values 

 > 65 mmHg 

Central venous pressure (CVP) [33, 38] > 8 mmHg 

O2/CO2-derived parameters 

Central venous oxygen saturation (ScvO2) > 70–75% 

Oxygen Extraction Rate (O2ER) [23] < 27% 

Venoarterial carbon dioxide gradient (CO2-gap) < 5 mmHg 

Serum lactate (ICU) 10% decline/hour 

Fluid responsiveness (consider giving fluids if no harm) 

Pulse Pressure Variation (PPV) [19,20] > 13% 

Pulse Pressure Variation (PPV TV6-8)* [21] > 3.5% 

SvO2 increase after fluid bolus [22] > 2% 

Δ ETCO2 (exhaled CO2) increase after fluid bolus 

[31,32]  

> 5% 

Attention /consider stop giving fluids 

Intra-Abdominal Pressure (IAP) [36] > 11 mmHg 

Lung ultrasound B lines 

 

  

                  



 

 

 

Figure 1 Pressure, oxygen, and carbon dioxide derived indices. MAP, Mean Arterial 

Pressure; PPV, Pulse Pressure Variation; SaO2, Arterial Oxygen Saturation; PaCO2, 

Arterial Blood Partial Pressure of Carbon Dioxide; CVP, Central Venous Pressure; 

ScvO2, Central Venous Oxygen Saturation; PvCO2, Venous Blood Partial Pressure of 

Carbon Dioxide; IAP, Intra-Abdominal Pressure; SPP, Systemic Perfusion Pressure; 

O2ER, Oxygen Extraction Rate; CO2-gap, Veno-Arterial Carbon Dioxide Gradient, 

APP, Abdominal Perfusion Pressure.  

 

 

  

                  



 

 

Figure 2 Assessment of volume responsiveness. HR/RR, Heart rate/Respiratory Rate; 

TV, Tidal Volume; IBW, Ideal Body Weight. 

 

                  


